Relatório AM #14 - Política fiscal

No Relatório AM de hoje, vamos comentar a situação da política fiscal nos últimos meses. A análise é feita com os dados disponibilizados pelo STN, porém a última atualização ocorreu em maio desse ano, então há certa defasagem nos valores apresentados. Inicialmente, vamos apresentar os resultados acumulados em 12 meses para maio desse ano, e do ano passado:

Como podemos ver, as receitas do governo parecem ter um crescimento estável, porém as políticas necessárias para o combate da pandemia e manutenção do bem-estar da população aumentaram fortemente as despesas, abrindo o déficit nominal. É interessante notar que essa trajetória negativa vai na contramão da tendência pré-pandemia, que era de melhora do resultado nominal, em face da crise de 2016:

Ademais, podemos ver que a composição dos gastos foi diferente durante a pandemia, correspondendo ao caráter emergencial das medidas tomadas. Com isso, era esperado que o resultado fiscal fosse melhor após o aumento do estoque de pessoas vacinadas.

Há, porém, uma grande dúvida aberta em torno da agenda fiscal que tem sido tocada pelo Congresso. Em particular, temas antigos como o dos precatórios voltaram à pauta, bem como há diversos questionamentos em relação à reforma tributária.

Todos esses questionamentos se refletem no aumento do risco-país nas últimas semanas, como pode ser visto no gráfico abaixo.

________________________

(*) Para entender mais sobre política fiscal e análise de conjuntura econômica, confira nosso Curso de Análise de Conjuntura usando o R - Versão 5.0.

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Análise de Séries Temporais com a Linguagem R: dados ISP-RJ

Neste tutorial, vamos conduzir uma análise diagnóstica completa. Começaremos visualizando a série e sua tendência, depois a decomporemos em seus componentes fundamentais. Em seguida, investigaremos a distribuição estatística dos dados e, por fim, aplicaremos técnicas mais avançadas, como a análise de autocorrelação e testes de estacionariedade, que são pré-requisitos cruciais para a construção de modelos de previsão robustos como o ARIMA.

Análise de dados com a Linguagem R: Segurança no Rio de Janeiro

Neste post, criamos um tutorial prático que guia você através do ciclo completo de análise de dados, desde a coleta e tratamento até a visualização e comunicação de resultados. Utilizando a linguagem R, o ecossistema tidyverse e a ferramenta de publicação Quarto, analisamos a base de dados de criminalidade do Instituto de Segurança Pública (ISP) do Rio de Janeiro.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.