Relatório AM #6 - Núcleos de inflação

Ao longo das últimas semanas, temos dado ênfase aqui no Relatório AM à discussão da inflação no cenário nacional. Na semana passada, a reunião do COPOM confirmou aquilo que esperávamos, com aumento da taxa básica de juros para 4.25% e nenhuma menção à normalização parcial. Isso é resultado da persistência da trajetória da inflação, de modo que seu nível atual não pode ser atribuído somente a choques. Para elucidar isso, vamos falar mais a fundo sobre como têm se comportados os núcleos da inflação nos últimos meses.

O monitoramento dos preços da economia através de núcleos de inflação é uma prática muito comum atualmente, pois facilita o isolamento dos fenômenos reais (os choques) e dá maior transparência para as decisões da política monetária, facilitando a convergência das expectativas no regime de metas de inflação. No Brasil, temos 7 núcleos: 4 de exclusão (IPCA-EX0, 1, 2 e 3), 2 de médias aparadas (MA e MS), e o núcleo de dupla ponderação (DP). Observando os resultados de cada núcleo separadamente, verificamos que o resultado geral da inflação não pode ser atribuído a setores específicos da economia, e não é resultado de choques em itens específicos de alta volatilidade:

Outra maneira de analisar o comportamento da inflação é através do índice de difusão. Esse valor é simplesmente o percentual de itens do IPCA que teve variação positiva nos seus preços no período. Como cada item possui o mesmo peso, valores altos do índice indicam que o aumento dos níveis de preços é realmente generalizado, configurando a inflação por definição, e sem a possibilidade de influência de choques exacerbados em itens específicos sobre o valor final. Abaixo, podemos ver que ao longo de 2020 o índice teve grande aumento, com a média móvel se mantendo em trajetória crescente até as últimas observações:

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Como criar um Agente de IA analista de dados

Agentes de IA podem automatizar a coleta, tratamento e análise de indicadores econômicos, entregando insights prontos para a tomada de decisão. Combinando modelos de linguagem (LLM) avançados com ferramentas de acesso a dados, é possível construir soluções que buscam informações em tempo real e as processam de forma autônoma. Neste post mostramos uma visão geral sobre como isso tudo funciona.

Como Criar um Agente Analista Financeiro com LangGraph e Dados da CVM

Este post apresenta a construção de um sistema multiagente para análise financeira automatizada com LangGraph. A partir dos dados das demonstrações contábeis da CVM, mostramos como agentes especializados podem interpretar perguntas, consultar bancos de dados e gerar análises financeiras, simulando o trabalho de um analista.

O que é e como funcionam Sistemas Multi-Agentes

Sistemas multi-agentes (MAS) representam uma nova forma de estruturar aplicações de inteligência artificial, especialmente úteis para lidar com problemas complexos e distribuídos. Em vez de depender de um único agente generalista, esses sistemas são compostos por múltiplos agentes especializados que colaboram, competem ou se coordenam para executar tarefas específicas. Neste post, explicamos o que são os MAS, seus principais componentes (como LLMs, ferramentas e processos) e as arquiteturas mais comuns.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.