Análise da inflação de outubro com o R

O IBGE divulgou hoje pela manhã a inflação de outubro medida pelo IPCA. O resultado mensal foi de 0,10%, o que levou a inflação acumulada em 12 meses para 2,54%, 1,71 pontos percentuais abaixo da meta de 4,25%. O resultado de outubro é o menor para o mês desde 1998 e ocorre após uma deflação atípica em setembro, mostrando que a inflação brasileira, enfim, está respondendo ao hiato do produto ainda bastante negativo. De forma a fazer uma análise do resultado, vamos verificar os subgrupos do IPCA. Abaixo, carregamos alguns pacotes.


library(readxl)
library(tidyverse)

Em seguida nós importamos o arquivo subgrupos.csv que contém a variação e o peso dos subgrupos do IPCA em outubro. Com efeito, criamos uma terceira variável que é a contribuição de cada um dos subgrupos.


subgrupos = read_excel('subgrupos.xlsx') %>%
mutate(contribuicao = variacao*peso/100)

Por fim, nós criamos um gráfico, destacando as contribuições posiivas e negativas para a inflação de outubro.


ggplot(subgrupos, aes(x=subgrupo, y=contribuicao))+
geom_bar(stat='identity',
position = 'identity',
fill=ifelse(subgrupos$contribuicao < 0, 'red', 'darkblue'),
colour=ifelse(subgrupos$contribuicao < 0, 'red', 'darkblue'),
width = 0.5)+
theme(axis.text.x=element_text(angle=90, hjust=1),
plot.title = element_text(size=11))+
labs(x='', y='', title='Contribuição dos Subgrupos para a inflação de outubro (p.p.)',
caption='Fonte: analisemacro.com.br')+
coord_flip()

Como se vê, o subgrupo combustíveis e energia contribuiu de forma negativa com 0,12 pontos percentuais, enquanto transportes foram responsáveis por 0,08 pontos percentuais de contirbuição para a inflação de outubro.

_______________

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Como a IA pode auxiliar na otimização de Portfólio de Investimentos?

A construção de portfólio ótimo refere-se ao processo de alocar eficientemente capital entre um conjunto predefinido de ativos ou títulos. O campo da construção de portfólio tem sido extensivamente estudado por acadêmicos e profissionais desde a década de 1950, quando Markowitz introduziu sua inovadora abordagem de média-variância para a construção de portfólio. Diante disso, podemos melhorar o processo de alocação de peso de um investimento em um portfólio através do Aprendizado não supervisionado com a aplicação do Hierarchical Risk Parity (HRP). Neste exercício, realizamos uma introdução ao método e mostramos os resultados de um exemplo criado através do Python.

Como usar IA + Python para o Mercado Financeiro?

Neste post, mostramos como a Inteligência Artificial, aliada à linguagem Python, está revolucionando o mercado financeiro. Exploramos as principais áreas onde essa tecnologia pode ser aplicada — como gestão de carteiras, análise de demonstrações contábeis, estratégias quantitativas, trading e análise macroeconômica — com foco em aplicações práticas e exemplos voltados para o contexto brasileiro.

Como otimizar um portfólio de investimentos no Python?

Este post apresenta, de forma prática e didática, como aplicar o modelo de otimização de carteiras de Markowitz utilizando Python. A partir de dados reais de ações brasileiras, mostramos como calcular retornos, medir riscos e encontrar a combinação ótima de ativos com base nas preferências de risco do investidor. Utilizamos a biblioteca Riskfolio-Lib para estruturar a análise e gerar gráficos como o conjunto de oportunidades e a fronteira eficiente.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.