As três grandes desinflações do Plano Real

[et_pb_section admin_label="section"][et_pb_row admin_label="row"][et_pb_column type="4_4"][et_pb_text admin_label="Texto" background_layout="light" text_orientation="justified" text_font="Verdana||||" text_font_size="18" use_border_color="off" border_color="#ffffff" border_style="solid"]

A inflação medida pelo Índice de Preços ao Consumidor Amplo (IPCA) terminou 2017 em 2,95%, a segunda menor desde a implantação do Plano Real, em 1994. Ela encerra também um dos três grandes processos de desinflação desde o advento do plano. A primeira ocorreu entre 1994 e 1998, quando a inflação saiu de inacreditáveis 916,46% no acumulado em doze meses até dezembro de 1994 e terminou em dezembro de 1998 em 1,65%. A segunda ocorreu entre 2002 e 2006, quando a inflação saiu de 12,53% para 3,14%. Nesse último, a inflação foi a 10,67% em 2015, retornando a patamares civilizados em dezembro último. O código e o gráfico abaixo ilustram esses três períodos.


library(ggplot2)
library(scales)
library(BETS)
library(TStools)

infanual = BETS.get(13522, from='1994-12-01')

seas = seasplot(infanual, trend=F, outplot = 3)

dezembro = as.numeric(seas$season[,12])

dezembro = dezembro[-length(dezembro)]

time = seq(as.Date('1995-01-01'), as.Date('2017-01-01'), by='1 year')

df1 = data.frame(time=time, dezembro=dezembro)

# Gráfico
ggplot(df1, aes(time, dezembro))+
 annotate("rect", fill = "orange", alpha = 0.2, 
 xmin = as.Date('1994-06-01'), 
 xmax = as.Date('1998-06-01'),
 ymin = -Inf, ymax = Inf)+
 annotate("rect", fill = "red", alpha = 0.2, 
 xmin = as.Date('2001-06-01'), 
 xmax = as.Date('2006-06-01'),
 ymin = -Inf, ymax = Inf)+
 annotate("rect", fill = "blue", alpha = 0.2, 
 xmin = as.Date('2014-06-01'), 
 xmax = as.Date('2017-06-01'),
 ymin = -Inf, ymax = Inf)+
 geom_bar(stat='identity', fill='darkblue', width = 200)+
 geom_text(aes(label=round(dezembro,2)), colour='red', 
 vjust=ifelse(dezembro \>= 0, -0.4, 1),
 size=3)+
 xlab('')+ylab('% a.a.')+
 labs(title='Inflação anual medida pelo IPCA',
 caption='Fonte: analisemacro.com.br com dados do IBGE.')+
 scale_x_date(breaks = date_breaks("1 years"),
 labels = date_format("%Y"))+
 theme(axis.text.x=element_text(angle=45, hjust=1))

Tomare que não precisemos de um quarto grande processo desinflacionário, não é mesmo, leitor? 🙂

[/et_pb_text][et_pb_image admin_label="Imagem" src="https://analisemacro.com.br/wp-content/uploads/2018/01/cursosR.png" show_in_lightbox="off" url="https://analisemacro.com.br/cursos-de-r/" url_new_window="off" use_overlay="off" animation="left" sticky="off" align="center" force_fullwidth="off" always_center_on_mobile="on" use_border_color="off" border_color="#ffffff" border_style="solid"] [/et_pb_image][/et_pb_column][/et_pb_row][/et_pb_section]

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Como planejar um pipeline de previsão macroeconômica: da coleta ao dashboard

Montar um pipeline de previsão macroeconômica não é apenas uma tarefa técnica — é um exercício de integração entre dados, modelos e automação. Neste post, apresento uma visão geral de como estruturar esse processo de ponta a ponta, da coleta de dados até a construção de um dashboard interativo, que exibe previsões automatizadas de inflação, câmbio, PIB e taxa Selic.

Coletando e integrando dados do BCB, IBGE e IPEA de forma automatizada

Quem trabalha com modelagem e previsão macroeconômica sabe o quanto é demorado reunir dados de diferentes fontes — Banco Central, IBGE, IPEA, FRED, IFI... Cada um com sua API, formato, frequência e estrutura. Esse gargalo de coleta e padronização consome tempo que poderia estar sendo usado na análise, nos modelos ou na comunicação dos resultados.

Foi exatamente por isso que criamos uma rotina de coleta automatizada, que busca, trata e organiza séries temporais econômicas diretamente das APIs oficiais, pronta para ser integrada a pipelines de previsão, dashboards ou agentes de IA econometristas.

Criando operações SQL com IA Generativa no R com querychat

No universo da análise de dados, a velocidade para obter respostas é um diferencial competitivo. Frequentemente, uma simples pergunta de negócio — “Qual foi nosso produto mais vendido no último trimestre na região Nordeste?” — inicia um processo que envolve abrir o RStudio, escrever código dplyr ou SQL, executar e, finalmente, obter a resposta. E se pudéssemos simplesmente perguntar isso aos nossos dados em português, diretamente no nosso dashboard Shiny?

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.