Desagregando o IPCA-15 com o R

[et_pb_section admin_label="section"][et_pb_row admin_label="row" make_fullwidth="off" use_custom_width="off" width_unit="on" use_custom_gutter="off" padding_mobile="off" background_color="#0c71c3" allow_player_pause="off" parallax="off" parallax_method="off" make_equal="off" parallax_1="off" parallax_method_1="off" parallax_2="off" parallax_method_2="off" column_padding_mobile="on"][et_pb_column type="2_3"][et_pb_text admin_label="Texto" background_layout="dark" text_orientation="left" use_border_color="off" border_color="#ffffff" border_style="solid"]

O Instituto Brasileiro de Geografia e Estatística (IBGE) divulgou na última sexta-feira, 22/10,  o Índice de Preços ao Consumidor Amplo 15 (IPCA-15). Aproveitamos para utilizar o R e obter cortes desagregados do índice no Clube do Código, o projeto de compartilhamento de códigos da Análise Macro. Divulgamos abaixo o mesmo para não membros o relatório em pdf produzido totalmente no R/RStudio. Membros do Clube do Código têm acesso aos códigos que geraram a apresentação na área restrita. Quer se tornar membro? Entre para o Clube aqui.

O Relatório está disponível aqui, no repositório público da AM no github. 

[/et_pb_text][et_pb_text admin_label="Texto" background_layout="dark" text_orientation="left" use_border_color="off" border_color="#ffffff" border_style="solid"]

OBS: O Clube do Código não implica em serviço de consultoria econômica, sendo tão somente um projeto que ensina os seus membros a utilizar o e o RStudio para produzir relatórios e apresentações, bem como gerar exercícios macroeconométricos.

[/et_pb_text][/et_pb_column][et_pb_column type="1_3"][et_pb_image admin_label="Imagem" src="https://analisemacro.com.br/wp-content/uploads/2016/06/ipca15.png" show_in_lightbox="on" url_new_window="off" use_overlay="off" animation="left" sticky="off" align="left" force_fullwidth="off" always_center_on_mobile="on" use_border_color="off" border_color="#ffffff" border_style="solid"] [/et_pb_image][/et_pb_column][/et_pb_row][/et_pb_section]

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Previsão com Vetores Autoregressivos no Python

Modelos Vetoriais AutoRegressivos (VAR) são amplamente utilizados na análise de séries temporais macroeconômicas. Eles permitem modelar a dinâmica conjunta de várias variáveis, capturando como choques em uma afetam as demais ao longo do tempo. Neste exercício, mostramos como aplicar um modelo VAR a um conjunto de dados macroeconômicos brasileiros para gerar previsões.

Previsão do Desemprego: Redes Neurais vs. Previsões do Focus

Não é de hoje que técnicas de machine learning vêm sendo usadas para explorar características não lineares de séries temporais (econômicas), especialmente para finalidade de previsão. Como exemplo, apresentamos uma abordagem híbrida do modelo NNAR e comparamos suas previsões com as de mercado, encontrando resultados em linha com a literatura recente.

Incorporando IA na previsão do PIB

O PIB é uma variável econômica complexa e de difícil previsão. Neste artigo, mostramos que unir métodos simples e métodos avançados pode aumentar significativamente a previsibilidade do crescimento da economia.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.