Desagregando o IPCA-15 com o R

[et_pb_section admin_label="section"][et_pb_row admin_label="row" make_fullwidth="off" use_custom_width="off" width_unit="on" use_custom_gutter="off" padding_mobile="off" background_color="#0c71c3" allow_player_pause="off" parallax="off" parallax_method="off" make_equal="off" parallax_1="off" parallax_method_1="off" parallax_2="off" parallax_method_2="off" column_padding_mobile="on"][et_pb_column type="2_3"][et_pb_text admin_label="Texto" background_layout="dark" text_orientation="left" use_border_color="off" border_color="#ffffff" border_style="solid"]

O Instituto Brasileiro de Geografia e Estatística (IBGE) divulgou na última sexta-feira, 22/10,  o Índice de Preços ao Consumidor Amplo 15 (IPCA-15). Aproveitamos para utilizar o R e obter cortes desagregados do índice no Clube do Código, o projeto de compartilhamento de códigos da Análise Macro. Divulgamos abaixo o mesmo para não membros o relatório em pdf produzido totalmente no R/RStudio. Membros do Clube do Código têm acesso aos códigos que geraram a apresentação na área restrita. Quer se tornar membro? Entre para o Clube aqui.

O Relatório está disponível aqui, no repositório público da AM no github. 

[/et_pb_text][et_pb_text admin_label="Texto" background_layout="dark" text_orientation="left" use_border_color="off" border_color="#ffffff" border_style="solid"]

OBS: O Clube do Código não implica em serviço de consultoria econômica, sendo tão somente um projeto que ensina os seus membros a utilizar o e o RStudio para produzir relatórios e apresentações, bem como gerar exercícios macroeconométricos.

[/et_pb_text][/et_pb_column][et_pb_column type="1_3"][et_pb_image admin_label="Imagem" src="https://analisemacro.com.br/wp-content/uploads/2016/06/ipca15.png" show_in_lightbox="on" url_new_window="off" use_overlay="off" animation="left" sticky="off" align="left" force_fullwidth="off" always_center_on_mobile="on" use_border_color="off" border_color="#ffffff" border_style="solid"] [/et_pb_image][/et_pb_column][/et_pb_row][/et_pb_section]

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Coletando dados do Google Trends no R e no Python

Como acompanhar e antecipar tendências de mercado? Independentemente da resposta final, os dados são o meio. Neste artigo, mostramos como obter dados do Google Trends em tempo quase real, utilizando as linguagens de programação R e Python.

Contribuição para a Volatilidade [Python]

A contribuição para a volatilidade fornece uma decomposição ponderada da contribuição de cada elemento do portfólio para o desvio padrão de todo o portfólio. Em termos formais, é definida pelo nome de contribuição marginal, que é basicamente a derivada parcial do desvio padrão do portfólio em relação aos pesos dos ativos. A interpretação da fórmula da contribuição marginal, entretanto, não é tão intuitiva, portanto, é necessário obter medidas que possibilitem analisar os componentes. Veremos portanto como calcular os componentes da contribuição e a porcentagem da contribuição. Vamos criar as respectivas medidas usando a linguagem de programação Python.

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.