Este blog recomenda esta leitura aqui.
Este blog recomenda esta leitura aqui.
A aprendizagem por transferência (ou transfer learning) é a técnica de reutilizar um modelo previamente treinado em um novo problema. Esse conceito representa um grande avanço para a previsão de variáveis, especialmente aquelas organizadas ao longo do tempo, como séries temporais. Neste post, exploramos como usar transfer learning com Python para trabalhar com esse tipo de dado.
Este exercício tem como objetivo apresentar a biblioteca pytimetk para a manipulação de dados financeiros no Python. Utilizaremos como exemplo ações brasileiras, demonstrando como carregar, estruturar, manipular e visualizar esses dados.
Este exercício tem como objetivo apresentar a biblioteca pytimetk para a manipulação de dados em séries temporais no Python. Utilizaremos como exemplo os núcleos de inflação, demonstrando como carregar, estruturar, manipular e visualizar esses dados.
comercial@analisemacro.com.br – Rua Visconde de Pirajá, 414, Sala 718
Ipanema, Rio de Janeiro – RJ – CEP: 22410-002
Criação Kamus – Hospedagem HostWP
como podemos ajudar?
Preencha os seus dados abaixo e fale conosco no WhatsApp
Boletim AM
Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.