Combinando Previsões

Uma maneira simples de melhorar a precisão das previsões é utilizar vários métodos diferentes na mesma série temporal e calcular a média das previsões resultantes. Vamos verificar como combinar previsões criados no R e Python utilizando variáveis macroeconômicas como exemplo.

Combinar previsões podem levar a um aumento de acurácia da previsão realizada. É comum diversos tipos de formas de junção dos resultados da previsão, seja por meio de uma média simples, seja por meio de uma combinação que penalize a pior.

Nos exemplos abaixo, utilizaremos uma média simples para combinar as previsões, pois é a abordagem mais natural. Essa abordagem tem se mostrado um excelente referencial, apesar ou talvez por causa de sua simplicidade. A previsão combinada é dada por f_c = \frac{1}{P} \sum_{i=1}^{P} f_i. É claro que outras medidas, talvez menos sensíveis a valores atípicos, como a mediana, também podem ser utilizadas.

Para obter todo o código em R e Python para os exemplos abaixo, faça parte do Clube AM, o repositório de códigos da Análise Macro, contendo exercícios semanais.

Exemplo no R

Para ilustrar, vamos considerar um exemplo envolvendo a Dívida Bruta do Governo Geral (DBGG). Criaremos 3 tipos de modelos, e realizaremos a junção dos valores da previsão por meio de uma média simples. Realizaremos a restrição dos dados em treino e teste, bem como criaremos cada modelo:

  • ETS (Exponential smoothing state space models)
  • Tendência Estocástica por meio de modelo de regressão dinâmica.
  • Auto ARIMA

Referências dos modelos, verificar Forecasting: Principles and Practice.

Exemplo no Python

Para ilustrar, vamos considerar um exemplo envolvendo algumas variáveis bastante conhecidas:

  1. inflação mensal medida pelo IPCA;
  2. expectativas em t para t+1 para a taxa de inflação mensal;
  3. IC-br;
  4. taxa de câmbio R/US;
  5. taxa Selic anualizada;
  6. taxa de desemprego medida pela PNAD Contínua.
  7. IBC-br

Criaremos previsões a partir de um VAR e ARIMA do IPCA Mensal. A partir da previsão dos dois modelos, criaremos uma combinação por meio de uma média simples

___________________________________
Quer aprender mais?

Seja um aluno da nossa trilha de Macroeconomia Aplicada  e aprenda a criar projetos voltados para a Macroeconomia.

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Criando operações SQL com IA Generativa no R com querychat

No universo da análise de dados, a velocidade para obter respostas é um diferencial competitivo. Frequentemente, uma simples pergunta de negócio — “Qual foi nosso produto mais vendido no último trimestre na região Nordeste?” — inicia um processo que envolve abrir o RStudio, escrever código dplyr ou SQL, executar e, finalmente, obter a resposta. E se pudéssemos simplesmente perguntar isso aos nossos dados em português, diretamente no nosso dashboard Shiny?

Dashboard Financeiro com IA e Shiny Python: Análise de Dados Abertos da CVM

Este artigo apresenta um tutorial completo sobre como construir uma ferramenta de análise financeira de ponta. Utilizando Shiny for Python, demonstramos a automação da coleta de dados das Demonstrações Financeiras Padronizadas (DFP) da CVM e o tratamento dessas informações com Pandas. O ponto alto do projeto é a integração da IA Generativa do Google Gemini, que atua como um assistente de análise, interpretando os dados filtrados pelo usuário e fornecendo insights contábeis e financeiros em tempo real. O resultado é um dashboard dinâmico que democratiza a análise de dados complexos e acelera a tomada de decisão.

Econometria, ML ou IA para previsão da PMS?

Prever a Pesquisa Mensal de Serviços (PMS/IBGE) é um desafio por natureza: trata-se de uma série mensal, sujeita a volatilidade e choques que vão de fatores sazonais a mudanças estruturais no setor. Para enfrentar esse problema, realizamos um exercício de comparação entre três abordagens de modelagem: econometria tradicional (ARIMA), machine learning (XGBoost) e inteligência artificial (TimeGPT).

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.