Combinando Previsões

Uma maneira simples de melhorar a precisão das previsões é utilizar vários métodos diferentes na mesma série temporal e calcular a média das previsões resultantes. Vamos verificar como combinar previsões criados no R e Python utilizando variáveis macroeconômicas como exemplo.

Combinar previsões podem levar a um aumento de acurácia da previsão realizada. É comum diversos tipos de formas de junção dos resultados da previsão, seja por meio de uma média simples, seja por meio de uma combinação que penalize a pior.

Nos exemplos abaixo, utilizaremos uma média simples para combinar as previsões, pois é a abordagem mais natural. Essa abordagem tem se mostrado um excelente referencial, apesar ou talvez por causa de sua simplicidade. A previsão combinada é dada por f_c = \frac{1}{P} \sum_{i=1}^{P} f_i. É claro que outras medidas, talvez menos sensíveis a valores atípicos, como a mediana, também podem ser utilizadas.

Para obter todo o código em R e Python para os exemplos abaixo, faça parte do Clube AM, o repositório de códigos da Análise Macro, contendo exercícios semanais.

Exemplo no R

Para ilustrar, vamos considerar um exemplo envolvendo a Dívida Bruta do Governo Geral (DBGG). Criaremos 3 tipos de modelos, e realizaremos a junção dos valores da previsão por meio de uma média simples. Realizaremos a restrição dos dados em treino e teste, bem como criaremos cada modelo:

  • ETS (Exponential smoothing state space models)
  • Tendência Estocástica por meio de modelo de regressão dinâmica.
  • Auto ARIMA

Referências dos modelos, verificar Forecasting: Principles and Practice.

Exemplo no Python

Para ilustrar, vamos considerar um exemplo envolvendo algumas variáveis bastante conhecidas:

  1. inflação mensal medida pelo IPCA;
  2. expectativas em t para t+1 para a taxa de inflação mensal;
  3. IC-br;
  4. taxa de câmbio R/US;
  5. taxa Selic anualizada;
  6. taxa de desemprego medida pela PNAD Contínua.
  7. IBC-br

Criaremos previsões a partir de um VAR e ARIMA do IPCA Mensal. A partir da previsão dos dois modelos, criaremos uma combinação por meio de uma média simples

___________________________________
Quer aprender mais?

Seja um aluno da nossa trilha de Macroeconomia Aplicada  e aprenda a criar projetos voltados para a Macroeconomia.

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Como Criar um Agente Analista para Dados da Inflação com LangGraph

Este post mostra como automatizar a análise da inflação brasileira com o uso de agentes inteligentes. Utilizando o LangGraph, integramos dados do IPCA, núcleos de inflação e grupos do índice para criar um sistema capaz de gerar análises econômicas automatizadas com base em consultas em linguagem natural.

Como Criar um Agente para Análise da Atividade Econômica com LangGraph

Este post mostra como automatizar a análise da atividade econômica brasileira com agentes inteligentes. Utilizando o framework LangGraph e dados do IBGE e Banco Central, construímos um sistema capaz de gerar respostas analíticas a partir de perguntas em linguagem natural, unindo automação de consultas SQL e interpretação econômica.

Introdução ao LangGraph

LangGraph é um framework em Python desenvolvido para gerenciar o fluxo de controle de aplicações que integram um modelo de linguagem (LLM). Com ele podemos construir Agentes de IA robustos e previsíveis.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.