Estimando o repasse cambial no Python

Medidas de repasse externo fazem parte da caixa de ferramentas de todos aqueles que trabalham com inflação e política monetária. Podemos utilizar o Python para realizar todo o processo ferramental de coleta, tratamento e estimação do efeito do repasse externo para a inflação doméstica.

Existem diversas metodologias para estimar o repasse, desde modelos mais complexos do tipo DSGE a abordagens mais simples que utilizam formas reduzidas das Curvas de Phillips derivadas de modelos estruturais menores.

O objetivo do exercício é oferecer uma medida de repasse externo a partir da estimação de um modelo inspirado na forma reduzida da Curva de Phillips do Modelo Semiestrutural de Pequeno Porte do BCB.

Tomamos como base o seguinte modelo abaixo:

    \[\pi_t^{livres} = \sum_{i>0} \beta_{1i} E_t \pi^{total}_{t+i} +\sum_{j>0} \beta_{2j} \pi^{total}_{t-j} +\sum_{k \geq 0} \beta_{3k} \pi^{importada}_{t-k} + \sum_{l>0} \beta_{4l} hiato_{t-l} + \epsilon_t\]

Basicamente, a inflação dos preços livres é uma função linear da inflação passada, das expectativas de inflação, do hiato do produto e da inflação importada.

Construção do Modelo no Python

Vamos aplicar todo o processo de coleta, tratamento, modelagem e visualização dos dados utilizando somente o Python.

Para obter todo o código do processo de criação do modelo, faça parte do Clube AM, o repositório de códigos da Análise Macro, contendo exercícios semanais de R e Python.

No gráfico abaixo, temos a comparação entre os valores reais do IPCA livres e o valores ajustados pelo modelo proposto acima, estimado por uma regressão linear via MQO.

No gráfico abaixo, temos a contribuição de cada variável independente do modelo para o IPCA. Veja que a contribuição do repasse externo para a inflação medido pelo IC-br constituiu em um valor significativo em alguns anos pós-covid, entretanto configurou uma queda a partir do último trimestre de 2022.

_____________________________________
Quer aprender mais?

Seja um aluno da nossa trilha de Macroeconomia Aplicada  e aprenda a criar projetos voltados para a Macroeconomia.

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

O que são LLMs?

Anteriormente, aprendemos que cada Agente precisa de um Modelo de IA em seu núcleo, e que os LLMs são o tipo mais comum de modelos de IA para esse propósito.

Agora, vamos aprender o que são LLMs e como eles impulsionam os Agentes. Esta seção oferece uma explicação técnica concisa sobre o uso de LLMs.

O que são Agentes de IA?

O que é um agente e como ele funciona? Como agentes tomam decisões usando racioncínio e planejamento? Neste artigo, nosso objetivo é investigar estas questões para construir um conhecimento fundamental sobre AI agents.

As diferentes formas de avaliar o erro de um modelo de previsão

Existem tantas siglas para métricas de desempenho de modelos preditivos que é fácil se perder na sopa de letrinhas. Neste artigo, fornecemos uma visão geral das principais métricas para avaliar e comparar modelos de regressão e classificação, usando exemplos com dados em Python.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.