Estimando uma Curva de Phillips para o Brasil no R

O objetivo do post de hoje será mostrar como o R pode nos auxiliar a estimar uma forma reduzida da Curva de Phillips com a imposição da restrição de verticalidade de longo prazo estimada com instrumentos para o Brasil. O modelo segue uma versão simplificada do apresentado pelo Boxe do RI 2018/09

A Curva de Phillips para a inflação de preços livres do Brasil é representada por:

     $$ \pi_t^{livres} = \sum_{i>0} \beta_{1i} E_t \pi^{total}_{t+i} +\sum_{j>0} \beta_{2j} \pi^{total}_{t-j} +\sum_{k \geq 0} \beta_{3k} \pi^{importada}_{t-k} + \sum_{l>0} \beta_{4l} hiato_{t-l} + \sum_{m = 1}^4 D_m + \epsilon_t $$

com a imposição da restrição de verticalidade de longo prazo:

     $$ \sum_{i>0} \beta_{1i} +\sum_{j>0} \beta_{2j} +\sum_{k \geq 0} \beta_{3k} = 1 \end{align} $$

onde $\pi_t^{livres}$ é a inflação de preços livres do IPCA; $ E_t \pi^{total}_{t+i}$ é a expectativa em t acerca da inflação do IPCA i trimestres à frente; $ \pi^{total}_{t-j}$ é a inflação do IPCA; $\pi^{importada}_{t-k} $é uma medida da inflação importada;$ hiato_{t-l} $é uma medida do hiato do produtos; $D_m $ são Dummys de choques e $\epsilon_t $ um termo de erro.

Basicamente, a inflação dos preços livres é uma função linear da inflação passada, das expectativas de inflação, do hiato do produto e da inflação importada. Os dados são trimestrais.

Para estimarmos a Curva de Phillips iremos passar por todas as etapas do processo de análise de dados utilizando o R, iremos coletar os dados, realizar os devidos tratamentos, e por fim iremos estimar a equação por meio de uma regressão em dois estágios com a restrição utilizando o pacote {systemfit}.

Abaixo, os resultados Modelo com os coeficientes e as principais estatísticas.

 

_____________________________________
Quer aprender mais?

Seja um aluno da nossa trilha de Macroeconomia Aplicada  e aprenda a criar projetos voltados para a Macroeconomia.

 

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Modelo de Previsão da Dívida Bruta do Governo Geral (DBGG) para 2025

Neste exercício, contruímos um algoritmo simples de cenarização para a Dívida Bruta do Governo Geral (DBGG) em % do PIB, usando apenas dados públicos, simulações estatísticas, a literatura recente e a linguagem R. Em uma abordagem semi-automatizada, as simulações do modelo se aproximam das previsões do mercado para o ano de 2025.

Modelo de Previsão do Resultado Primário para 2025

Neste exercício, contruímos um modelo simples de previsão para o Resultado Primário do Setor Público Consolidado (acumulado em 12 meses, % PIB), usando apenas dados públicos, modelos econométricos, a literatura recente e a linguagem R. Em uma abordagem automatizada, as previsões do modelo se aproximam das previsões do mercado para o ano de 2025.

Estimando o Hiato do Produto do Brasil usando a linguagem R

Este exercício estima o Hiato do Produto do Brasil utilizando quatro métodos univariados distintos. Para lidar com o problema de fim de amostra causado por filtros univariados, incorporamos previsões do PIB provenientes de agentes econômicos e projeções simples, estendendo a série temporal além da amostra original. Todo o processo de coleta, tratamento, estimação e visualização dos hiatos foi realizado na linguagem de programação R.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.