Estimando uma Curva de Phillips para o Brasil no R

O objetivo do post de hoje será mostrar como o R pode nos auxiliar a estimar uma forma reduzida da Curva de Phillips com a imposição da restrição de verticalidade de longo prazo estimada com instrumentos para o Brasil. O modelo segue uma versão simplificada do apresentado pelo Boxe do RI 2018/09

A Curva de Phillips para a inflação de preços livres do Brasil é representada por:

     $$ \pi_t^{livres} = \sum_{i>0} \beta_{1i} E_t \pi^{total}_{t+i} +\sum_{j>0} \beta_{2j} \pi^{total}_{t-j} +\sum_{k \geq 0} \beta_{3k} \pi^{importada}_{t-k} + \sum_{l>0} \beta_{4l} hiato_{t-l} + \sum_{m = 1}^4 D_m + \epsilon_t $$

com a imposição da restrição de verticalidade de longo prazo:

     $$ \sum_{i>0} \beta_{1i} +\sum_{j>0} \beta_{2j} +\sum_{k \geq 0} \beta_{3k} = 1 \end{align} $$

onde $\pi_t^{livres}$ é a inflação de preços livres do IPCA; $ E_t \pi^{total}_{t+i}$ é a expectativa em t acerca da inflação do IPCA i trimestres à frente; $ \pi^{total}_{t-j}$ é a inflação do IPCA; $\pi^{importada}_{t-k} $é uma medida da inflação importada;$ hiato_{t-l} $é uma medida do hiato do produtos; $D_m $ são Dummys de choques e $\epsilon_t $ um termo de erro.

Basicamente, a inflação dos preços livres é uma função linear da inflação passada, das expectativas de inflação, do hiato do produto e da inflação importada. Os dados são trimestrais.

Para estimarmos a Curva de Phillips iremos passar por todas as etapas do processo de análise de dados utilizando o R, iremos coletar os dados, realizar os devidos tratamentos, e por fim iremos estimar a equação por meio de uma regressão em dois estágios com a restrição utilizando o pacote {systemfit}.

Abaixo, os resultados Modelo com os coeficientes e as principais estatísticas.

 

_____________________________________
Quer aprender mais?

Seja um aluno da nossa trilha de Macroeconomia Aplicada  e aprenda a criar projetos voltados para a Macroeconomia.

 

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Como se comportou a Taxa de Participação no Brasil nos últimos anos? Uma Análise com a Linguagem R

O objetivo deste estudo é analisar a evolução da Taxa de Participação no Brasil, contrastando-a com a Taxa de Desocupação e decompondo suas variações para entender os vetores (populacionais e de força de trabalho) que influenciam o comportamento atual do mercado de trabalho. Para isso, utilizamos a linguagem R em todo o processo, desde a coleta e o tratamento das informações até a visualização dos resultados, empregando os principais pacotes disponíveis no ecossistema da linguagem.

Como se comportou a inflação de serviços no Brasil nos últimos anos?

Uma análise econométrica da inflação de serviços no Brasil comparando os cenários de 2014 e 2025. Utilizando uma Curva de Phillips própria e estimativas da NAIRU via filtro HP, investigamos se o atual desemprego nas mínimas históricas repete os riscos do passado. Entenda como as expectativas de inflação e o hiato do desemprego explicam o comportamento mais benigno dos preços atuais em relação à década anterior.

Como se comportou o endividamento e a inadimplência nos últimos anos? Uma análise utilizando a linguagem R

Neste exercício realizamos uma análise sobre a inadimplência dos brasileiros no período recente, utilizando a linguagem R para examinar dados públicos do Banco Central e do IBGE. Investigamos a evolução do endividamento, da inadimplência e das concessões de crédito, contextualizando-os com as dinâmicas da política monetária (Taxa Selic) e do mercado de trabalho (renda e desemprego).

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.