O Banco Central sob os mandatos de Meirelles, Tombini e Goldfajn

A Edição 62 do Clube do Código atualiza um exercício feito nesse espaço pelo Ricardo Lima nos idos de 2015, quando comparava as administrações de Henrique Meirelles e Alexandre Tombini à frente do Banco Central. A ideia básica do exercício era verificar a reação do Banco Central a choques na inflação e no desemprego. Nessa atualização, nós adicionamos o período de Ilan Goldfajn à frente da autoridade monetária, mudamos o desemprego pelo hiato do produto e apresentamos os resultados.

Os dados utilizados no exercício foram a taxa básica de juros, a inflação mensal medida pelo IPCA e o Índice de Nível de Atividade do Banco Central, o IBC-Br. Com base nesses dados, nós construímos um BVAR com Minnesota prior. Dividimos a amostra em três subamostras que faziam referência aos períodos de gestão de Meirelles, Tombini e Goldfajn à frente da autoridade monetária. Nessas subamostras, calculamos as funções de impulso-resposta com base em choques no hiato do produto e na inflação. Para ilustrar, abaixo a resposta para um choque na inflação.

A resposta de Meirelles e Goldfajn a choques na inflação são similares, enquanto a resposta da gestão Tombini não parece ser significativa. Abaixo a resposta acumulada.

Os códigos do exercício estarão disponíveis no repositório do Clube na próxima sexta-feira. 

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Como usar Modelos de Linguagem no R com o pacote {elmer}

Na análise de dados contemporânea, o uso de Modelos de Linguagem (LLMs) vem se consolidando como uma ferramenta poderosa para automatizar e aprimorar tarefas analíticas. Ao integrarmos LLMs a pacotes como o ellmer, podemos ampliar nossas capacidades de extração, interpretação e automação de dados no ambiente R. Neste post, exploramos o papel desses modelos e detalhamos como o ellmer opera dentro do universo da linguagem de programação R.

Introdução ao AutoGen: Agentes Inteligentes na Análise Financeira

O AutoGen é um framework da Microsoft que permite criar agentes de IA colaborativos. Na área financeira, pode automatizar a coleta de dados, cálculos de indicadores e geração de relatórios. Este artigo apresenta os conceitos básicos e um exemplo aplicado a ações de empresas.

Como usar LangGraph e LLMs para prever a inflação no Brasil

Este post apresenta um estudo de caso sobre como utilizar o LangGraph e modelos de linguagem para estruturar um sistema multiagente voltado à previsão do IPCA. O exercício cria um sistema que utiliza-se de personas analíticas que trabalham em paralelo, permitindo validar previsões, calcular métricas de erro e consolidar relatórios automatizados. A abordagem demonstra como fluxos multiagentes podem apoiar a análise econômica, oferecendo múltiplas perspectivas e maior consistência nos resultados.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.