O Banco Central sob os mandatos de Meirelles, Tombini e Goldfajn

A Edição 62 do Clube do Código atualiza um exercício feito nesse espaço pelo Ricardo Lima nos idos de 2015, quando comparava as administrações de Henrique Meirelles e Alexandre Tombini à frente do Banco Central. A ideia básica do exercício era verificar a reação do Banco Central a choques na inflação e no desemprego. Nessa atualização, nós adicionamos o período de Ilan Goldfajn à frente da autoridade monetária, mudamos o desemprego pelo hiato do produto e apresentamos os resultados.

Os dados utilizados no exercício foram a taxa básica de juros, a inflação mensal medida pelo IPCA e o Índice de Nível de Atividade do Banco Central, o IBC-Br. Com base nesses dados, nós construímos um BVAR com Minnesota prior. Dividimos a amostra em três subamostras que faziam referência aos períodos de gestão de Meirelles, Tombini e Goldfajn à frente da autoridade monetária. Nessas subamostras, calculamos as funções de impulso-resposta com base em choques no hiato do produto e na inflação. Para ilustrar, abaixo a resposta para um choque na inflação.

A resposta de Meirelles e Goldfajn a choques na inflação são similares, enquanto a resposta da gestão Tombini não parece ser significativa. Abaixo a resposta acumulada.

Os códigos do exercício estarão disponíveis no repositório do Clube na próxima sexta-feira. 

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Modelo de Previsão da Dívida Bruta do Governo Geral (DBGG) para 2025

Neste exercício, contruímos um algoritmo simples de cenarização para a Dívida Bruta do Governo Geral (DBGG) em % do PIB, usando apenas dados públicos, simulações estatísticas, a literatura recente e a linguagem R. Em uma abordagem semi-automatizada, as simulações do modelo se aproximam das previsões do mercado para o ano de 2025.

Modelo de Previsão do Resultado Primário para 2025

Neste exercício, contruímos um modelo simples de previsão para o Resultado Primário do Setor Público Consolidado (acumulado em 12 meses, % PIB), usando apenas dados públicos, modelos econométricos, a literatura recente e a linguagem R. Em uma abordagem automatizada, as previsões do modelo se aproximam das previsões do mercado para o ano de 2025.

Estimando o Hiato do Produto do Brasil usando a linguagem R

Este exercício estima o Hiato do Produto do Brasil utilizando quatro métodos univariados distintos. Para lidar com o problema de fim de amostra causado por filtros univariados, incorporamos previsões do PIB provenientes de agentes econômicos e projeções simples, estendendo a série temporal além da amostra original. Todo o processo de coleta, tratamento, estimação e visualização dos hiatos foi realizado na linguagem de programação R.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.