Prêmio do Swap pré-DI 360 no Python

No post de hoje, continuamos com a série de postagens envolvendo exercícios de Macroeconometria no Python, investigando dessa vez a relação entre o Swap pré-DI 360 dias e a Expectativas da Selic de acordo com o Focus. Estimamos ao fim, por meio de um 2SLS com instrumentos o Prêmio.

O objetivo do exercício será modelar a curva para o prêmio do Swap pré-DI de 360 dias frente, por meio da seguinte equação, com base no RTI de Junho/2017.

(1)    \begin{align*} premio_t = \gamma_0 + \sum_{i>0} \gamma_{1i} premio_{t-i} + \gamma_2 rispa_{t} + v_t \end{align*}

Onde $premio_t$ é o diferencial entre a taxa swap pré-DI de 360 dias e a expectativa para a taxa Selic para o período do contrato do swap; $rispa_t$ é uma variável representativa do prêmio de risco do país (Embi ou CDS 5 anos, por exemplo); e $v_t$ é um termo de erro.

Para obter todo o código do processo de criação do modelo, faça parte do Clube AM, o repositório de códigos da Análise Macro, contendo exercícios semanais de R e Python.

O gráfico abaixo mostra a estreita relação entre a taxa swap pré-DI 360 dias e a expectativa para a taxa Selic 12 meses à frente de acordo com a pesquisa Focus. Podemos então extrair o prêmio pela diferença entre as duas séries.

Com a coleta e tratamento dos dados por meio do Python, obtemos os seguintes resultados da regressão exposta acima.

_____________________________________

Quer aprender mais?

Seja um aluno da nossa trilha de Macroeconomia Aplicada  e aprenda a criar projetos voltados para a Macroeconomia.

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Como usar IA para ler as atas do FED

Os “AI Assistants” são ferramentas que permitem automatizar e agilizar o processo de análise de dados e tomada de decisão. Neste artigo, mostramos como usar IA Generativa para criar um AI Assistant simples que analisa as decisões sobre a política de juros do FED.

Devemos usar a métrica MAPE em previsão de demanda?

A previsão de demanda é um componente essencial da análise econômica e empresarial. Para avaliar a precisão das previsões, diversas métricas de erro são utilizadas. Entre elas, o Erro Percentual Absoluto Médio (MAPE - Mean Absolute Percentage Error) é uma das mais conhecidas. Neste artigo discutimos suas vantagens e desvantagens com exemplos.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!