Taxa de Desemprego: PNAD Contínua vs. PME

Nosso objetivo neste exercício será estender a taxa de desemprego fornecida pela Pesquisa de Nacional por Amostra de Domicílios Contínua (PNAD Contínua) através daquela fornecida pela Pesquisa Mensal de Emprego (PME). Serão construídas duas séries: uma normal, outra dessazonalizada. Faremos todo o exercício utilizando o Python.

PNADC e PME

A Taxa de desocupação, na semana de referência, das pessoas de 14 anos ou mais de idade, conhecida como Taxa de Desocupação medida pela PNADc, abrange todo o território nacional e é mensurada como uma taxa de variação em trimestres móveis. A série teve início em 2012.

Já a PME, Pesquisa Mensal de Emprego, foi encerrada em março de 2016, com a divulgação dos resultados referentes ao mês de fevereiro de 2016. Ela abrangia seis Regiões Metropolitanas (Recife, Salvador, Belo Horizonte, Rio de Janeiro, São Paulo e Porto Alegre). Diferente da PNADc não é mensurada em trimestres móveis.

Os alunos do curso de Macroeconometria usando o Python, têm a oportunidade de adquirir um conhecimento abrangente em todas as fases do processo, desde a coleta e a preparação dos dados até a análise, o desenvolvimento de modelos econométricos e a comunicação dos resultados, tudo isso utilizando Python como ferramenta principal.

No gráfico abaixo, verificamos a duas séries no período em que foram divulgadas simultaneamente, de 2012 até 2016.

Temos agora um conjunto de dados com a intersecção das duas séries, começando em março de 2012 e indo até fevereiro de 2016. Plotamos as duas abaixo.

O gráfico nos mostra que a série da PNAD Contínua tem uma média maior do que a da PME, bem como é um pouco mais suave, refletindo o fato de que a mesma é uma média trimestral móvel. Ambas as séries caminham, entretanto, de forma parecida, a despeito da diferença da amostra. Abaixo as estatísticas descritivas das duas séries.

Código
pnad pme
count 48.000000 48.000000
mean 7.604167 5.730090
std 0.908578 1.010961
min 6.300000 4.304397
25% 6.900000 4.892217
50% 7.400000 5.443909
75% 8.025000 6.147074
max 10.400000 8.201058

Exercício: Ampliando a série da PNAD

Uma vez definido o conjunto de dados, passemos ao exercício em si. Como o nosso objetivo é basicamente expandir a taxa de desemprego da PNAD Contínua, vamos então regredir a mesma contra a taxa da PME. O resultado dos valores ajustados da PNADc são demonstrados abaixo, comparando-os com a série original.

Valores Ampliados da PNADc

De posse dos valores estimados, criamos uma ampliação da PNADc adicionando o intercepto e multiplicando o coeficiente estimado da regressão pelos valores históricos da PME. Isso permite que tenhamos uma ampliação da série da PNADc. Os valores ampliados são visualizados abaixo:

Dessazonalização

Podemos, agora, dessazonalizar a nossa taxa de desemprego. Usamos o algoritmo x13-arima-seats. Comparamos os novos valores com a série ampliando pelo gráfico abaixo.

Quer aprender mais?

Clique aqui para fazer seu cadastro no Boletim AM e baixar o código que produziu este exercício, além de receber novos exercícios com exemplos reais de análise de dados envolvendo as áreas de Data Science, Econometria, Machine Learning, Macroeconomia Aplicada, Finanças Quantitativas e Políticas Públicas diretamente em seu e-mail.

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Criando Personas de Analistas com LangGraph

Este post apresenta um estudo de caso sobre a criação de um assistente de pesquisa com o LangGraph, integrando o conceito de human-in-the-loop. O sistema gera personas de analistas a partir de um tema, recebe feedback humano e ajusta as respostas de forma iterativa, garantindo resultados mais precisos e personalizados.

O que é Agentic RAG e o que o diferencia de RAG?

Neste post, explicamos o que é o Agentic RAG, como ele se diferencia do RAG tradicional e apresentamos um estudo de caso construído com base nas Atas do COPOM, mostrando passo a passo como criar um agente que busca, avalia, reescreve e responde perguntas sobre política monetária.

Como Criar um Agente de IA Econometrista

Criar um Agente de IA Econometrista envolve construir um sistema autônomo capaz de entender uma solicitação em linguagem natural, buscar dados econômicos, realizar análises e aplicar modelos econométricos para entregar uma resposta completa. A abordagem mais eficaz é estruturar o sistema em múltiplos agentes especializados, cada um com um papel definido, que colaboram para resolver a tarefa. Neste post abordamos o desenvolvimento deste sistema de IA com Python.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.