Com baixo crescimento, por que o desemprego não sobe?

pnadcontinuaRecentemente eu abordei a questão do baixo desemprego no Brasil pela ótica da Pesquisa Nacional por Amostra de Domicílios (PNAD). Na oportunidade procurei correlacionar os programas do governo na área de educação (FIES, Prouni e PRONATEC) com a redução do desemprego no período de 2009 a 2012. Os dados sugerem que o desemprego caiu na faixa etária de 15 a 24 anos muito mais por saída de pessoas do mercado de trabalho (ou não entrada) do que propriamente por criação de vagas para essa parcela da população. A curiosidade acabou me levando a testar a hipótese com a nova pesquisa do IBGE, a PNAD Contínua. Vamos a ela.

A tabela acima resume o fluxo de pessoas que entraram ( ou saíram) na (da) População em Idade Ativa (PIA), População Economicamente Ativa (PEA), População Ocupada (PO) e População Desocupada (PD) entre o primeiro trimestre de 2012 e o último de 2013. Como pode ser visto na linha Participação na Redução da PD (%), 59% da redução do desemprego está concentrada na faixa etária de 14 a 24 anos. Em outras palavras, dos 1,5 milhão de pessoas que deixaram o desemprego entre 2012 e 2013, quase 1 milhão está nessa faixa etária. E nessa faixa etária houve redução da ocupação (-186 mil) e saída de pessoas do mercado de trabalho (-1,1 milhão). O gráfico abaixo resume a participação por faixa etária na redução do desemprego no período.

reducaodesemprego

Significa dizer, leitor, que a queda de 1,8 pontos percentuais no desemprego entre 2012 e 2013 está concentrada na faixa etária de 14 a 24 anos. Essa faixa, como abordado no post anterior, é o público-alvo dos programas educacionais do governo federal. Parece ser, nesse aspecto, mais uma evidência a explicar a aparente dicotomia entre baixo desemprego e baixo crescimento. O desemprego não subiu no período porque uma parte importante da população não está procurando emprego. Se estivessem, dado o baixo nível de atividade, é muito provável que o desemprego estivesse em patamar acima do atual.

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Como usar automação com Python e IA na análise de ações

No cenário atual, profissionais de finanças buscam formas mais rápidas, eficientes e precisas para analisar dados e tomar decisões. Uma das grandes revoluções para isso é o uso combinado de Python, automação e modelos de linguagem grande (LLMs), como o Google Gemini. O dashboard que criamos é um ótimo exemplo prático dessa integração, reunindo dados, cálculos, visualizações e análise textual em um único ambiente.

Análise de ações com IA - um guia inicial

Neste artigo, você vai aprender a integrar IA na análise de ações de forma automatizada utilizando Python. Ao final, você terá um pipeline completo capaz de coletar dados de mercado, gerar gráficos, elaborar relatórios com linguagem natural.

Quais são as ferramentas de IA?

Um aspecto crucial dos Agentes de IA é a sua capacidade de tomar ações, que acontecem por meio do uso de Ferramentas (Tools). Neste artigo, vamos aprender o que são Tools, como defini-las de forma eficaz e como integrá-las ao seu Agente por meio da System Prompt. Ao fornecer as Tools certas para o seu Agente — e ao descrever claramente como essas Tools funcionam — você pode aumentar drasticamente o que sua IA é capaz de realizar.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.