Com baixo crescimento, por que o desemprego não sobe?

pnadcontinuaRecentemente eu abordei a questão do baixo desemprego no Brasil pela ótica da Pesquisa Nacional por Amostra de Domicílios (PNAD). Na oportunidade procurei correlacionar os programas do governo na área de educação (FIES, Prouni e PRONATEC) com a redução do desemprego no período de 2009 a 2012. Os dados sugerem que o desemprego caiu na faixa etária de 15 a 24 anos muito mais por saída de pessoas do mercado de trabalho (ou não entrada) do que propriamente por criação de vagas para essa parcela da população. A curiosidade acabou me levando a testar a hipótese com a nova pesquisa do IBGE, a PNAD Contínua. Vamos a ela.

A tabela acima resume o fluxo de pessoas que entraram ( ou saíram) na (da) População em Idade Ativa (PIA), População Economicamente Ativa (PEA), População Ocupada (PO) e População Desocupada (PD) entre o primeiro trimestre de 2012 e o último de 2013. Como pode ser visto na linha Participação na Redução da PD (%), 59% da redução do desemprego está concentrada na faixa etária de 14 a 24 anos. Em outras palavras, dos 1,5 milhão de pessoas que deixaram o desemprego entre 2012 e 2013, quase 1 milhão está nessa faixa etária. E nessa faixa etária houve redução da ocupação (-186 mil) e saída de pessoas do mercado de trabalho (-1,1 milhão). O gráfico abaixo resume a participação por faixa etária na redução do desemprego no período.

reducaodesemprego

Significa dizer, leitor, que a queda de 1,8 pontos percentuais no desemprego entre 2012 e 2013 está concentrada na faixa etária de 14 a 24 anos. Essa faixa, como abordado no post anterior, é o público-alvo dos programas educacionais do governo federal. Parece ser, nesse aspecto, mais uma evidência a explicar a aparente dicotomia entre baixo desemprego e baixo crescimento. O desemprego não subiu no período porque uma parte importante da população não está procurando emprego. Se estivessem, dado o baixo nível de atividade, é muito provável que o desemprego estivesse em patamar acima do atual.

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Coletando dados do Google Trends no R e no Python

Como acompanhar e antecipar tendências de mercado? Independentemente da resposta final, os dados são o meio. Neste artigo, mostramos como obter dados do Google Trends em tempo quase real, utilizando as linguagens de programação R e Python.

Contribuição para a Volatilidade [Python]

A contribuição para a volatilidade fornece uma decomposição ponderada da contribuição de cada elemento do portfólio para o desvio padrão de todo o portfólio. Em termos formais, é definida pelo nome de contribuição marginal, que é basicamente a derivada parcial do desvio padrão do portfólio em relação aos pesos dos ativos. A interpretação da fórmula da contribuição marginal, entretanto, não é tão intuitiva, portanto, é necessário obter medidas que possibilitem analisar os componentes. Veremos portanto como calcular os componentes da contribuição e a porcentagem da contribuição. Vamos criar as respectivas medidas usando a linguagem de programação Python.

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.