Desemprego deve permanecer estável ao longo do ano

O IBGE divulgou na última terça-feira os resultados da PNAD Contínua para o trimestre móvel encerrado em março. Como comentei no comentário de conjuntura dessa semana, as notícias não foram boas. A taxa de desemprego ficou em 12,7%, enquanto a taxa dessazonalizada ficou em 12%, apenas 0,1 p.p. abaixo de fevereiro. De modo a gerar uma projeção para os próximos seis meses, a propósito, eu atualizei os modelos apresentados na edição 53 do Clube do Código, de modo a gerar uma previsão combinada para a taxa de desemprego.

 

Previsões para a Taxa de Desemprego
SARIMA Kalman BVAR Combinada
2019 Apr 12.3 12.6 12.7 12.6
2019 May 11.8 12.5 12.6 12.5
2019 Jun 11.3 12.3 12.5 12.3
2019 Jul 10.9 12.3 12.4 12.3
2019 Aug 10.5 12.2 12.3 12.2
2019 Sep 10.0 12.0 12.2 12.0

A tabela acima resume as previsões geradas pelos três modelos que rodei, bem como a previsão combinada entre eles, com maior peso para o Filtro de Kalman. A taxa de desemprego deve cair dos atuais 12,7% para algo próximo a 12% em setembro. Em termos dessazonalizados, entretanto, a taxa de desemprego deve se manter estável ao longo do período projetado, se mantendo próxima a 12,1%. O gráfico abaixo ilustra.

Caso essas projeções se confirmem, não deixa de ser um banho de água fria...

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Como usar IA + Python para o Mercado Financeiro?

Neste post, mostramos como a Inteligência Artificial, aliada à linguagem Python, está revolucionando o mercado financeiro. Exploramos as principais áreas onde essa tecnologia pode ser aplicada — como gestão de carteiras, análise de demonstrações contábeis, estratégias quantitativas, trading e análise macroeconômica — com foco em aplicações práticas e exemplos voltados para o contexto brasileiro.

Como otimizar um portfólio de investimentos no Python?

Este post apresenta, de forma prática e didática, como aplicar o modelo de otimização de carteiras de Markowitz utilizando Python. A partir de dados reais de ações brasileiras, mostramos como calcular retornos, medir riscos e encontrar a combinação ótima de ativos com base nas preferências de risco do investidor. Utilizamos a biblioteca Riskfolio-Lib para estruturar a análise e gerar gráficos como o conjunto de oportunidades e a fronteira eficiente.

O que são SLMs?

Assim como os LLMs, os Small Language Models (SLMs) são Modelos de Linguagem baseados em IA em versões mais compactas, projetados para funcionar com menos recursos computacionais, menor latência e maior privacidade. Neste exercício mostramos como usar estes modelos usando API's ou localmente através do Python.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.