Desemprego deve permanecer estável ao longo do ano

O IBGE divulgou na última terça-feira os resultados da PNAD Contínua para o trimestre móvel encerrado em março. Como comentei no comentário de conjuntura dessa semana, as notícias não foram boas. A taxa de desemprego ficou em 12,7%, enquanto a taxa dessazonalizada ficou em 12%, apenas 0,1 p.p. abaixo de fevereiro. De modo a gerar uma projeção para os próximos seis meses, a propósito, eu atualizei os modelos apresentados na edição 53 do Clube do Código, de modo a gerar uma previsão combinada para a taxa de desemprego.

 

Previsões para a Taxa de Desemprego
SARIMA Kalman BVAR Combinada
2019 Apr 12.3 12.6 12.7 12.6
2019 May 11.8 12.5 12.6 12.5
2019 Jun 11.3 12.3 12.5 12.3
2019 Jul 10.9 12.3 12.4 12.3
2019 Aug 10.5 12.2 12.3 12.2
2019 Sep 10.0 12.0 12.2 12.0

A tabela acima resume as previsões geradas pelos três modelos que rodei, bem como a previsão combinada entre eles, com maior peso para o Filtro de Kalman. A taxa de desemprego deve cair dos atuais 12,7% para algo próximo a 12% em setembro. Em termos dessazonalizados, entretanto, a taxa de desemprego deve se manter estável ao longo do período projetado, se mantendo próxima a 12,1%. O gráfico abaixo ilustra.

Caso essas projeções se confirmem, não deixa de ser um banho de água fria...

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Previsões do Boletim Focus em Anos Eleitorais

Eleições são momentos de incerteza, mas os dados do Boletim Focus mostram que nem toda incerteza é igual. Ao analisar as previsões de inflação, juros e câmbio nos anos que antecederam as eleições de 2014, 2018 e 2022, este post investiga como o mercado revisa cenários macroeconômicos ao longo do tempo.

Como Medir o Ciclo das Concessões de Crédito usando Python

Este exercício apresenta uma análise quantitativa da relação entre o ciclo de concessões de crédito, a atividade econômica e a política monetária no Brasil. Utilizando a linguagem Python, o estudo aplica técnicas de decomposição de séries temporais (X13-ARIMA e Filtro HP) para isolar os componentes cíclicos dos dados. Os resultados da modelagem econométrica confirmam a pró ciclicidade do crédito em relação ao hiato do produto e sua sensibilidade às variações no hiato da taxa de juros real.

Choque de juros e renda em bens duráveis e não duráveis usando Python

Este artigo analisa a dinâmica do consumo no Brasil utilizando Python e modelos de Vetores Autorregressivos (VAR). Ao segregar bens duráveis e não duráveis, o estudo quantifica a sensibilidade a choques de juros e renda. Criamos todo o processo através do ciclo de dados: coleta, tratamento, análise de dados, modelagem e apresentação dos resultados, tudo automatizado usando a linguagem Python.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.