Consolidando Métricas Fiscais

Uma das coisas que os alunos do Curso de Análise de Conjuntura usando o R irão aprender é trabalhar com dados. Hoje, trago um exemplo. Peguei algumas variáveis fiscais diretamente do Banco Central usando o R e criei uma tabela com as últimas três observações dessas séries. O leitor pode vê-la abaixo. Tudo fica automatizado, de modo que na próxima atualização dos dados, basta que o aluno modifique algumas poucas linhas de código e gere novamente a tabela.

Métricas da Situação Fiscal.
Fev/16 Mar/16 Abr/16
Nominal SPC 638572,01 579317,80 603712,88
Nominal GFBC 528095,17 468143,76 494181,58
Nominal GEM 100724,82 100958,08 98844,16
Juros SPC 513432,86 443295,76 464427,54
Juros GFBC 402501,69 332123,22 356237,70
Juros GEM 105373,01 105859,31 102744,80
Primário SPC 125139,15 136022,04 139285,34
Primário GFBC 125593,51 136020,57 137943,90
Primário GEM -4648,19 -4901,23 -3900,64
Nominal SPC % PIB 10,75 9,71 10,08
Nominal GFBC % PIB 8,89 7,85 8,25
Nominal GEM % PIB 1,70 1,69 1,65
Juros SPC % PIB 8,64 7,43 7,76
Juros GFBC % PIB 6,78 5,57 5,95
Juros GEM % PIB 1,77 1,78 1,72
Primário SPC % PIB 2,11 2,28 2,33
Primário GFBC % PIB 2,11 2,28 2,30
Primário GEM % PIB -0,08 -0,08 -0,07
Nominal DBGG 4017298,55 4005700,25 4039289,28
Nominal DLSP 2186771,34 2314842,91 2356611,04
Nominal DGFBC 1399516,92 1533881,44 1575573,76
Nominal DGEM 733383,49 726941,83 726632,83
DBGG % PIB 67,63 67,17 67,46
DLSP % PIB 36,81 38,82 39,36
DGFBC % PIB 23,56 25,72 26,31
DGEM % PIB 12,35 12,19 12,14

 

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

O que são Agentes de IA?

O que é um agente e como ele funciona? Como agentes tomam decisões usando racioncínio e planejamento? Neste artigo, nosso objetivo é investigar estas questões para construir um conhecimento fundamental sobre AI agents.

As diferentes formas de avaliar o erro de um modelo de previsão

Existem tantas siglas para métricas de desempenho de modelos preditivos que é fácil se perder na sopa de letrinhas. Neste artigo, fornecemos uma visão geral das principais métricas para avaliar e comparar modelos de regressão e classificação, usando exemplos com dados em Python.

Previsão do CPI usando text mining

Exploramos neste exercício, de forma similar a Ferreira (2022), a utilidade de tópicos latentes extraídos dos comunicados do FOMC, por um modelo LDA, na previsão da inflação norte-americana, medida pelo CPI. O objetivo é comparar um modelo econométrico simples, tal como um AR-GAP de Faust e Wright (2013), em especificações com e sem os fatores textuais.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.