Levando o Relatório de Inflação para o R

[et_pb_section admin_label="section"][et_pb_row admin_label="row"][et_pb_column type="4_4"][et_pb_text admin_label="Texto" background_layout="light" text_orientation="justified" text_font="Verdana||||" text_font_size="18" use_border_color="off" border_color="#ffffff" border_style="solid"]

O R pode ser uma ferramenta poderosa para quem lida com análise de textos. Em minhas atividades de pesquisa, por exemplo, há a construção de índices de comunicação do Banco Central, onde preciso classificar determinadas palavras em classes de "potência" da política monetária. Isto é, se um determinado conjunto de palavras for mais citado do que outro, é possível dizer se a política monetária será mais expansionista, contracionista ou neutra. Agora, imagine o trabalho que dá fazer isso na mão? Pois é. O R é uma baita ajuda nessa empreitada.

Para ilustrar esse processo de mineração de textos (ou text mining) de forma simples aqui, vamos construir uma wordcloud do relatório de inflação divulgado nessa manhã.  Para isso, em primeiro lugar preciso levar o relatório para o R. Para fazer isso, eu vou usar o pacote pdftools, como abaixo.

library(pdftools)
download.file("http://www.bcb.gov.br/htms/relinf/port/2017/03/ri201703P.pdf", 
 "ri201703P.pdf", mode = "wb")
ri = pdf_text("ri201703P.pdf")

Uma vez que tenhamos o relatório no R, agora podemos operar a "mágica". Para isso, vamos fazer uso do pacote tm, uma biblioteca específica para text mining. Carregamos o pacote e colocamos nosso objeto ri na estrutura de um corpus, a classe de variável utilizada pelo pacote.

library(tm)
text_corpus = Corpus(VectorSource(ri))

Feito isso, podemos agora usar a função tm_map() para modificar o conteúdo do nosso corpus. Para detalhes, ver a documentação do pacote.

corpus_clean = tm_map(text_corpus, stripWhitespace)
corpus_clean = tm_map(corpus_clean, removeNumbers)
corpus_clean = tm_map(corpus_clean, PlainTextDocument)
corpus_clean = tm_map(corpus_clean, removePunctuation) 
corpus_clean = tm_map(corpus_clean, removeWords, stopwords('pt')) 

E, por fim, podemos usar o pacote wordcloud para enfim construir nossa wordcloud... 

library(wordcloud)
wordcloud(corpus_clean, max.words=150, random.order=FALSE, 
 colors=brewer.pal(8,"Dark2"))

O resultado é bastante simples. Mas imagine agora as possibilidades do text mining com uma ferramenta tão poderosa quanto o R? 🙂

 

[/et_pb_text][/et_pb_column][/et_pb_row][et_pb_row admin_label="row"][et_pb_column type="1_2"][et_pb_button admin_label="Botão" button_url="https://analisemacro.com.br/cursos-de-r/introducao-ao-r/" url_new_window="off" button_text="Curso de Introdução ao R " button_alignment="center" background_layout="light" custom_button="off" button_letter_spacing="0" button_use_icon="default" button_icon_placement="right" button_on_hover="on" button_letter_spacing_hover="0"] [/et_pb_button][/et_pb_column][et_pb_column type="1_2"][et_pb_button admin_label="Botão" button_url="https://analisemacro.com.br/cursos-de-r/analise-de-conjuntura/" url_new_window="off" button_text="Análise de Conjuntura usando o R " button_alignment="center" background_layout="light" custom_button="off" button_letter_spacing="0" button_use_icon="default" button_icon_placement="right" button_on_hover="on" button_letter_spacing_hover="0"] [/et_pb_button][/et_pb_column][/et_pb_row][/et_pb_section]

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Como se comportou a Taxa de Participação no Brasil nos últimos anos? Uma Análise com a Linguagem R

O objetivo deste estudo é analisar a evolução da Taxa de Participação no Brasil, contrastando-a com a Taxa de Desocupação e decompondo suas variações para entender os vetores (populacionais e de força de trabalho) que influenciam o comportamento atual do mercado de trabalho. Para isso, utilizamos a linguagem R em todo o processo, desde a coleta e o tratamento das informações até a visualização dos resultados, empregando os principais pacotes disponíveis no ecossistema da linguagem.

Como se comportou a inflação de serviços no Brasil nos últimos anos?

Uma análise econométrica da inflação de serviços no Brasil comparando os cenários de 2014 e 2025. Utilizando uma Curva de Phillips própria e estimativas da NAIRU via filtro HP, investigamos se o atual desemprego nas mínimas históricas repete os riscos do passado. Entenda como as expectativas de inflação e o hiato do desemprego explicam o comportamento mais benigno dos preços atuais em relação à década anterior.

Como se comportou o endividamento e a inadimplência nos últimos anos? Uma análise utilizando a linguagem R

Neste exercício realizamos uma análise sobre a inadimplência dos brasileiros no período recente, utilizando a linguagem R para examinar dados públicos do Banco Central e do IBGE. Investigamos a evolução do endividamento, da inadimplência e das concessões de crédito, contextualizando-os com as dinâmicas da política monetária (Taxa Selic) e do mercado de trabalho (renda e desemprego).

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.