O modelo de Inflation Forecast Targeting

A leitura da última ata do COPOM nos fez lembrar de Svensson (1997), no qual o autor trata de um regime de metas de inflação com a existência de uma meta intermediária: as expectativas de inflação do próprio Banco Central. O autor argumenta que a operacionalização do regime de metas em si é complicada haja visto que a autoridade monetária não possui controle perfeito sobre a taxa de inflação. A existência de falhas de mercado - como a rigidez de contratos - e defasagens nos mecanismos de transmissão da política monetária fazem com que o Banco Central possa afetar, apenas, a inflação futura. Desse modo, o uso das projeções de inflação como meta intermediária serviria de guia para alcançar o objetivo final da política monetária.

Woodford (2007) observa que um Banco Central comprometido com inflation forecast targeting ajusta o instrumento de política monetária de modo a garantir a convergência entre suas projeções de inflação e a meta previamente definida. O autor argumenta, ainda, que a implementação desse tipo de versão do regime de metas para inflação representa uma síntese entre a discrição e a adoção de uma regra. Isto porque nele é possível tornar claro para o público como o Banco Central vê a inflação no médio e longo prazo. Possibilita, portanto, que reações a choques de curto prazo, por exemplo, não causem mudanças bruscas nas expectativas de inflação.

Svensson (1997) apresenta como se operacionaliza o modelo de inflation forecast targeting. Para ilustrar, considere um modelo simples como em Barbosa (2010), com duas defasagens, uma Curva de Phillips, uma IS e uma função de perda L para cada período, como abaixo:

(1)   \begin{equation*} \pi_{t+1} = \pi_{t} + \alpha_{1}h_{t} + \varepsilon_{t+1} \end{equation*}

(2)   \begin{equation*} h_{t+1} = -\beta_{2}(i_{t} - \pi_{t} - r_{s}) + \mu_{t+1} \end{equation*}

(3)   \begin{equation*} L(\pi_{t+2}) = E[(\pi_{t+2} - \pi^*)^2 + \gamma(h_{t})^2] \end{equation*}

Onde \pi_{t} é a taxa de inflação, h_{t} é o hiato do produto, i_{t} é a taxa nominal de juros, r_{s} é a taxa de juros natural, \varepsilon_{t+1} e \mu_{t+1} são, respectivamente, um choque de oferta e outro de demanda no período t, conhecidos em t+1, i.i.d.; \alpha_{1} e \beta_{2} são parâmetros positivos e \gamma é um parâmetro que varia entre 0 e 1, medindo as preferências do Banco Central em relação à estabilização do produto.

Vamos considerar, por simplificação, que \gamma=0. Para calcular E(\pi_{t+2}) devemos nos atentar para as defasagens envolvidas no modelo. Mudanças na taxa de juros nominal afetam o hiato do produto com um período de defasagem e a inflação com dois períodos de defasagem. Desse modo, podemos expressar \pi_{t+2} substituindo (2) em (1) de modo que:

(4)   \begin{eqnarray*}\pi_{t+2} = \pi_{t+1} + \alpha_{1}h_{t+1} + \varepsilon_{t+2} \nonumber \\ \pi_{t+2} = (\pi_{t} + \alpha_{1}h_{t} + \varepsilon_{t+1}) + \alpha_{1}(-\beta_{2}(i_{t} - \pi_{t} - r_{s}) + \mu_{t+1}) + \varepsilon_{t+2} \nonumber \\ \pi_{t+2} = [(1 + \alpha_{1}\beta_{2})\pi_{t} + \alpha_{1}h_{t} - \alpha_{1}\beta_{2}(i_{t} - r_{s})] + (\varepsilon_{t+1} + \alpha_{1}\mu_{t+1} + \varepsilon_{t+2}) \end{eqnarray*}

Aplicando o operador esperança sobre (4), temos que:

(5)   \begin{equation*}E(\pi_{t+2}) = [(1 + \alpha_{1}\beta_{2})\pi_{t} + \alpha_{1}h_{t} - \alpha_{1}\beta_{2}(i_{t} - r_{s})]\end{equation*}

Em outros termos, a expectativa sobre \pi_{t+2} depende da taxa de juros nominal no período t. Nessas condições, para que o Banco Central consiga minimizar (3) com respeito a i_{t} é necessário que:

(6)   \begin{equation*}E(\pi_{t+2}) = \pi^*\end{equation*}

Nesses termos, de (5) e (6), podemos expressar i_{t} como segue:

(7)   \begin{equation*}i_{t} = (r_{s} - \pi_{t}) + \frac{1}{\alpha_{1}\beta_{2}}(\pi_{t}- \pi^*) + \frac{1}{\beta_{2}}h_{t}\end{equation*}

O ponto central, portanto, é que a minimização da função de perda em um regime de inflation forecast targeting é dada pela condição (6). As expectativas para \pi_{t+2} funcionam como um guia para saber se o Banco Central conseguirá ou não cumprir a meta de inflação. Como observa Svensson (1997), uma meta intermediária da política monetária.

(**) Isso e muito mais é visto em nosso Curso de Análise de Conjuntura usando o R!

_________________________________________________________

Barbosa, F. H. (2010). Macroeconomia, mimeo.

Svensson, L. E. O. (1997). Inflation Forecast Targeting: Implementing and Monitoring Inflation Targets, European Economic Review, 41(July).

Woodford, M. (1994). Nonstandard indicators for monetary policy: Can their usefulness be judged from Forecasting Regressions? In Mankiw, G. (ed), Monetary Policy, Chicago: The University of Chicago Press.

___________. (2007). The Case for Forecast Targeting as a Monetary Policy Strategy, Journal of Economic Perspectives, 21(4):3-24.

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Como Criar um Agente de IA Econometrista

Criar um Agente de IA Econometrista envolve construir um sistema autônomo capaz de entender uma solicitação em linguagem natural, buscar dados econômicos, realizar análises e aplicar modelos econométricos para entregar uma resposta completa. A abordagem mais eficaz é estruturar o sistema em múltiplos agentes especializados, cada um com um papel definido, que colaboram para resolver a tarefa. Neste post abordamos o desenvolvimento deste sistema de IA com Python.

Como criar um Agente de IA analista de dados

Agentes de IA podem automatizar a coleta, tratamento e análise de indicadores econômicos, entregando insights prontos para a tomada de decisão. Combinando modelos de linguagem (LLM) avançados com ferramentas de acesso a dados, é possível construir soluções que buscam informações em tempo real e as processam de forma autônoma. Neste post mostramos uma visão geral sobre como isso tudo funciona.

O que é e como funcionam Sistemas Multi-Agentes

Sistemas multi-agentes (MAS) representam uma nova forma de estruturar aplicações de inteligência artificial, especialmente úteis para lidar com problemas complexos e distribuídos. Em vez de depender de um único agente generalista, esses sistemas são compostos por múltiplos agentes especializados que colaboram, competem ou se coordenam para executar tarefas específicas. Neste post, explicamos o que são os MAS, seus principais componentes (como LLMs, ferramentas e processos) e as arquiteturas mais comuns.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.