Pós-Copom: bom-senso venceu.

expinfOntem, o Comitê de Política Monetária decidiu, por unanimidade, elevar a taxa básica de juros, a Selic, em 50 pontos-base, de 10% para 10,5%. Na minha leitura pesou na decisão dos membros do comitê o IPCA divulgado na última semana, mostrando uma inflação bastante disseminada pelos 365 bens e serviços que compõem o índice, com a difusão beirando os 70%. A despeito dos problemas de comunicação da autoridade monetária, notadamente ao explicitar as defasagens envolvidas no processo e a indecisão sobre o cenário fiscal, observo que a Selic deve ir mesmo a 11% na próxima reunião, como havia projetado na Carta de Dezembro e no cenário normativo da Carta de Janeiro. O Banco Central, com essa decisão, mostrou que não abandonou, ainda, a ancoragem das expectativas - que só cederão quando a inflação efetiva mostrar algum alívio, como pode ser visto no gráfico ao lado. As pressões remanescentes sobre o índice, como a desvalorização do câmbio e o contínuo crescimento da massa salarial, são desafios para o movimento contracionista. A minha leitura, nesse ponto, é que o Banco faça mais um ajuste de 50 pontos-base em fevereiro e suste o processo, verificando a transmissão sobre os principais canais (expectativas, notadamente). A aguardar a ata na próxima semana para confirmar essa leitura. O bom-senso, leitor, venceu: ao  menos, por enquanto.

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Como choques inflacionários afetam a previsão da Selic?

Como mensurar a importância de choques na inflação sobre o erro de previsão da taxa de juros? Neste exercício quantificamos esta pergunta sob a ótica de um modelo VAR, usando dados recentes da macroeconomia brasileira. Especificamente, estimamos a decomposição da variância dos erros de previsão do modelo, analisando choques na inflação da gasolina e sua importância sobre a variância dos erros de previsão da taxa Selic.

Modelo de previsão para o preço da gasolina

Neste exercício exploramos os dados públicos sobre o preço da gasolina no Brasil, sua composição, evolução temporal, políticas associadas e, por fim, construímos um modelo simples de previsão. Com um modelo em mãos, o analista pode cenarizar o comportamento futuro da série da forma como preferir. Todos os procedimentos foram feitos usando a linguagem de programação Python.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.