Pós-Copom: bom-senso venceu.

expinfOntem, o Comitê de Política Monetária decidiu, por unanimidade, elevar a taxa básica de juros, a Selic, em 50 pontos-base, de 10% para 10,5%. Na minha leitura pesou na decisão dos membros do comitê o IPCA divulgado na última semana, mostrando uma inflação bastante disseminada pelos 365 bens e serviços que compõem o índice, com a difusão beirando os 70%. A despeito dos problemas de comunicação da autoridade monetária, notadamente ao explicitar as defasagens envolvidas no processo e a indecisão sobre o cenário fiscal, observo que a Selic deve ir mesmo a 11% na próxima reunião, como havia projetado na Carta de Dezembro e no cenário normativo da Carta de Janeiro. O Banco Central, com essa decisão, mostrou que não abandonou, ainda, a ancoragem das expectativas - que só cederão quando a inflação efetiva mostrar algum alívio, como pode ser visto no gráfico ao lado. As pressões remanescentes sobre o índice, como a desvalorização do câmbio e o contínuo crescimento da massa salarial, são desafios para o movimento contracionista. A minha leitura, nesse ponto, é que o Banco faça mais um ajuste de 50 pontos-base em fevereiro e suste o processo, verificando a transmissão sobre os principais canais (expectativas, notadamente). A aguardar a ata na próxima semana para confirmar essa leitura. O bom-senso, leitor, venceu: ao  menos, por enquanto.

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Coletando dados do Google Trends no R e no Python

Como acompanhar e antecipar tendências de mercado? Independentemente da resposta final, os dados são o meio. Neste artigo, mostramos como obter dados do Google Trends em tempo quase real, utilizando as linguagens de programação R e Python.

Contribuição para a Volatilidade [Python]

A contribuição para a volatilidade fornece uma decomposição ponderada da contribuição de cada elemento do portfólio para o desvio padrão de todo o portfólio. Em termos formais, é definida pelo nome de contribuição marginal, que é basicamente a derivada parcial do desvio padrão do portfólio em relação aos pesos dos ativos. A interpretação da fórmula da contribuição marginal, entretanto, não é tão intuitiva, portanto, é necessário obter medidas que possibilitem analisar os componentes. Veremos portanto como calcular os componentes da contribuição e a porcentagem da contribuição. Vamos criar as respectivas medidas usando a linguagem de programação Python.

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.