Como interpretar a turbulência nas bolsas internacionais?

A "segunda-feira negra", dia em que as bolsas de todo o mundo registraram índices negativos, foi uma reação aos últimos acontecimentos na Europa e, notadamente, nos EUA. Este último simbolizado pelo rebaixamento de nota da dívida de longo prazo pela S&P, de AAA para AA+, mas muito mais pela desconfiança dos investidores em relação ao potencial de recuperação da economia americana nos próximos trimestres. Já na Europa o problema é a desconfiança  em relação à capacidade dos governos da Espanha e da Itália de conseguirem rolar suas dívidas nos próximos meses. O spread em relação ao título alemão vem aumentando nas últimas semanas. Para quem não é familiariado com o tema segue uma tentativa de explicação básica sobre o assunto.

Existem ao redor do globo diversos agentes com capital em busca de valorização [daí a expressão 'capital externo']. Esses "proprietários de capital" aplicam o mesmo em diversos mercados: bolsa de valores, mercado de futuros, commodities, renda fixa etc. Tudo tendo com base dois conceitos básicos em finanças: risco e retorno. E, claro, sempre tendo a noção de que quanto maior o retorno, maior o risco do investimento.

Um agente individual, por exemplo, tendo 100 $ pode decidir aplicar esse montante em diversos mercados, dados, basicamente, o seu perfil em relação ao risco e ao retorno. O perfil do investidor com capitais girando ao redor do mundo (de um país para outro, de uma bolsa para outra, de uma bolsa para ouro etc.) é mais agressivo do que aquele que prefere manter seu capital em títulos de renda fixa, por exemplo. O problema é que mesmo esse agente agressivo é avesso ao risco. A aversão a risco é uma medida, portanto, de grau. Como ninguém sabe o que irá acontecer no futuro, todos os investidores são, por definição, avessos ao risco.

Nesse contexto, se aumenta a incerteza em relação aos cenários básicos projetados para o futuro (a economia americana voltar a crescer, a europa fazer o ajuste fiscal etc.), ocorre uma maior aversão ao risco por parte dos investidores. Quando isso ocorre, há uma saída de mercados tidos como mais arriscados [bolsas de valores, por exemplo] para mercados mais seguros [ouro, por exemplo]. Foi justamente isso que aconteceu ontem: diversos agentes assumiram posição de venda nas bolsas ao redor do mundo, migrando para outros mercados, como o de ouro. Daí que se mais pessoas estão vendendo ações do que comprando, a ação desvaloriza, ocorrendo o contrário no "mercado de ouro".

Até ai tudo bem, dirá o leitor mais astuto, mas como ocorre a contaminação? Como vários agentes ao mesmo tempo assumem posição de venda? A teoria econômica explica isso pelo já tradicional "efeito manada". Os agentes buscam sempre não perder e, caso isso seja inevitável, perder o mínimo possível. Daí que se há no horizonte desconfiança, aumento da incerteza, um agente [representativo] começa a emitir vendas de ações, o que é seguido por outros e mais outros, potencializando o efeito negativo. A busca por proteção contra possíveis perdas gera essa fuga da bolsa para outros mercados.

O curioso nesse caso é que, mesmo com o rebaixamento da nota da dívida dos EUA, houve igualmente uma migração para títulos americanos nessa estória toda. Isto porque o mercado [ainda] entende que o título americano é de baixo risco e em momentos de maior aversão,  ele se torna um dos refúgios seguros para o capital externo.

E como fica a economia brasileira nessa estória toda? É assunto para um post amanhã...

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Como usar IA + Python para o Mercado Financeiro?

Neste post, mostramos como a Inteligência Artificial, aliada à linguagem Python, está revolucionando o mercado financeiro. Exploramos as principais áreas onde essa tecnologia pode ser aplicada — como gestão de carteiras, análise de demonstrações contábeis, estratégias quantitativas, trading e análise macroeconômica — com foco em aplicações práticas e exemplos voltados para o contexto brasileiro.

Como otimizar um portfólio de investimentos no Python?

Este post apresenta, de forma prática e didática, como aplicar o modelo de otimização de carteiras de Markowitz utilizando Python. A partir de dados reais de ações brasileiras, mostramos como calcular retornos, medir riscos e encontrar a combinação ótima de ativos com base nas preferências de risco do investidor. Utilizamos a biblioteca Riskfolio-Lib para estruturar a análise e gerar gráficos como o conjunto de oportunidades e a fronteira eficiente.

O que são SLMs?

Assim como os LLMs, os Small Language Models (SLMs) são Modelos de Linguagem baseados em IA em versões mais compactas, projetados para funcionar com menos recursos computacionais, menor latência e maior privacidade. Neste exercício mostramos como usar estes modelos usando API's ou localmente através do Python.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.