Como interpretar a turbulência nas bolsas internacionais?

A "segunda-feira negra", dia em que as bolsas de todo o mundo registraram índices negativos, foi uma reação aos últimos acontecimentos na Europa e, notadamente, nos EUA. Este último simbolizado pelo rebaixamento de nota da dívida de longo prazo pela S&P, de AAA para AA+, mas muito mais pela desconfiança dos investidores em relação ao potencial de recuperação da economia americana nos próximos trimestres. Já na Europa o problema é a desconfiança  em relação à capacidade dos governos da Espanha e da Itália de conseguirem rolar suas dívidas nos próximos meses. O spread em relação ao título alemão vem aumentando nas últimas semanas. Para quem não é familiariado com o tema segue uma tentativa de explicação básica sobre o assunto.

Existem ao redor do globo diversos agentes com capital em busca de valorização [daí a expressão 'capital externo']. Esses "proprietários de capital" aplicam o mesmo em diversos mercados: bolsa de valores, mercado de futuros, commodities, renda fixa etc. Tudo tendo com base dois conceitos básicos em finanças: risco e retorno. E, claro, sempre tendo a noção de que quanto maior o retorno, maior o risco do investimento.

Um agente individual, por exemplo, tendo 100 $ pode decidir aplicar esse montante em diversos mercados, dados, basicamente, o seu perfil em relação ao risco e ao retorno. O perfil do investidor com capitais girando ao redor do mundo (de um país para outro, de uma bolsa para outra, de uma bolsa para ouro etc.) é mais agressivo do que aquele que prefere manter seu capital em títulos de renda fixa, por exemplo. O problema é que mesmo esse agente agressivo é avesso ao risco. A aversão a risco é uma medida, portanto, de grau. Como ninguém sabe o que irá acontecer no futuro, todos os investidores são, por definição, avessos ao risco.

Nesse contexto, se aumenta a incerteza em relação aos cenários básicos projetados para o futuro (a economia americana voltar a crescer, a europa fazer o ajuste fiscal etc.), ocorre uma maior aversão ao risco por parte dos investidores. Quando isso ocorre, há uma saída de mercados tidos como mais arriscados [bolsas de valores, por exemplo] para mercados mais seguros [ouro, por exemplo]. Foi justamente isso que aconteceu ontem: diversos agentes assumiram posição de venda nas bolsas ao redor do mundo, migrando para outros mercados, como o de ouro. Daí que se mais pessoas estão vendendo ações do que comprando, a ação desvaloriza, ocorrendo o contrário no "mercado de ouro".

Até ai tudo bem, dirá o leitor mais astuto, mas como ocorre a contaminação? Como vários agentes ao mesmo tempo assumem posição de venda? A teoria econômica explica isso pelo já tradicional "efeito manada". Os agentes buscam sempre não perder e, caso isso seja inevitável, perder o mínimo possível. Daí que se há no horizonte desconfiança, aumento da incerteza, um agente [representativo] começa a emitir vendas de ações, o que é seguido por outros e mais outros, potencializando o efeito negativo. A busca por proteção contra possíveis perdas gera essa fuga da bolsa para outros mercados.

O curioso nesse caso é que, mesmo com o rebaixamento da nota da dívida dos EUA, houve igualmente uma migração para títulos americanos nessa estória toda. Isto porque o mercado [ainda] entende que o título americano é de baixo risco e em momentos de maior aversão,  ele se torna um dos refúgios seguros para o capital externo.

E como fica a economia brasileira nessa estória toda? É assunto para um post amanhã...

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Análise de Criptomoedas com Python

Aprenda a estruturar um pipeline de dados financeiros com Python. Ensinamos a construção de um dashboard automatizado para coleta, tratamento e visualização de criptomoedas via API.

Como Construir um Monitor de Política Monetária Automatizado com Python?

Descubra como transformar dados do Banco Central em inteligência de mercado com um Monitor de Política Monetária Automatizado. Neste artigo, exploramos o desenvolvimento de uma solução híbrida (Python + R) que integra análise de sentimento das atas do COPOM, cálculo da Regra de Taylor e monitoramento da taxa Selic. Aprenda a estruturar pipelines ETL eficientes e a visualizar insights econômicos em tempo real através de um dashboard interativo criado com Shiny, elevando o nível das suas decisões de investimento.

Qual o efeito de um choque de juros sobre a inadimplência?

Neste exercício, exploramos a relação dinâmica entre o custo do crédito (juros na ponta) e o risco realizado (taxa de inadimplência) através de uma análise exploratória de dados e modelagem econométrica utilizando a linguagem de programação R.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.