Como interpretar a turbulência nas bolsas internacionais?

A "segunda-feira negra", dia em que as bolsas de todo o mundo registraram índices negativos, foi uma reação aos últimos acontecimentos na Europa e, notadamente, nos EUA. Este último simbolizado pelo rebaixamento de nota da dívida de longo prazo pela S&P, de AAA para AA+, mas muito mais pela desconfiança dos investidores em relação ao potencial de recuperação da economia americana nos próximos trimestres. Já na Europa o problema é a desconfiança  em relação à capacidade dos governos da Espanha e da Itália de conseguirem rolar suas dívidas nos próximos meses. O spread em relação ao título alemão vem aumentando nas últimas semanas. Para quem não é familiariado com o tema segue uma tentativa de explicação básica sobre o assunto.

Existem ao redor do globo diversos agentes com capital em busca de valorização [daí a expressão 'capital externo']. Esses "proprietários de capital" aplicam o mesmo em diversos mercados: bolsa de valores, mercado de futuros, commodities, renda fixa etc. Tudo tendo com base dois conceitos básicos em finanças: risco e retorno. E, claro, sempre tendo a noção de que quanto maior o retorno, maior o risco do investimento.

Um agente individual, por exemplo, tendo 100 $ pode decidir aplicar esse montante em diversos mercados, dados, basicamente, o seu perfil em relação ao risco e ao retorno. O perfil do investidor com capitais girando ao redor do mundo (de um país para outro, de uma bolsa para outra, de uma bolsa para ouro etc.) é mais agressivo do que aquele que prefere manter seu capital em títulos de renda fixa, por exemplo. O problema é que mesmo esse agente agressivo é avesso ao risco. A aversão a risco é uma medida, portanto, de grau. Como ninguém sabe o que irá acontecer no futuro, todos os investidores são, por definição, avessos ao risco.

Nesse contexto, se aumenta a incerteza em relação aos cenários básicos projetados para o futuro (a economia americana voltar a crescer, a europa fazer o ajuste fiscal etc.), ocorre uma maior aversão ao risco por parte dos investidores. Quando isso ocorre, há uma saída de mercados tidos como mais arriscados [bolsas de valores, por exemplo] para mercados mais seguros [ouro, por exemplo]. Foi justamente isso que aconteceu ontem: diversos agentes assumiram posição de venda nas bolsas ao redor do mundo, migrando para outros mercados, como o de ouro. Daí que se mais pessoas estão vendendo ações do que comprando, a ação desvaloriza, ocorrendo o contrário no "mercado de ouro".

Até ai tudo bem, dirá o leitor mais astuto, mas como ocorre a contaminação? Como vários agentes ao mesmo tempo assumem posição de venda? A teoria econômica explica isso pelo já tradicional "efeito manada". Os agentes buscam sempre não perder e, caso isso seja inevitável, perder o mínimo possível. Daí que se há no horizonte desconfiança, aumento da incerteza, um agente [representativo] começa a emitir vendas de ações, o que é seguido por outros e mais outros, potencializando o efeito negativo. A busca por proteção contra possíveis perdas gera essa fuga da bolsa para outros mercados.

O curioso nesse caso é que, mesmo com o rebaixamento da nota da dívida dos EUA, houve igualmente uma migração para títulos americanos nessa estória toda. Isto porque o mercado [ainda] entende que o título americano é de baixo risco e em momentos de maior aversão,  ele se torna um dos refúgios seguros para o capital externo.

E como fica a economia brasileira nessa estória toda? É assunto para um post amanhã...

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Criando operações SQL com IA Generativa no R com querychat

No universo da análise de dados, a velocidade para obter respostas é um diferencial competitivo. Frequentemente, uma simples pergunta de negócio — “Qual foi nosso produto mais vendido no último trimestre na região Nordeste?” — inicia um processo que envolve abrir o RStudio, escrever código dplyr ou SQL, executar e, finalmente, obter a resposta. E se pudéssemos simplesmente perguntar isso aos nossos dados em português, diretamente no nosso dashboard Shiny?

Dashboard Financeiro com IA e Shiny Python: Análise de Dados Abertos da CVM

Este artigo apresenta um tutorial completo sobre como construir uma ferramenta de análise financeira de ponta. Utilizando Shiny for Python, demonstramos a automação da coleta de dados das Demonstrações Financeiras Padronizadas (DFP) da CVM e o tratamento dessas informações com Pandas. O ponto alto do projeto é a integração da IA Generativa do Google Gemini, que atua como um assistente de análise, interpretando os dados filtrados pelo usuário e fornecendo insights contábeis e financeiros em tempo real. O resultado é um dashboard dinâmico que democratiza a análise de dados complexos e acelera a tomada de decisão.

Econometria, ML ou IA para previsão da PMS?

Prever a Pesquisa Mensal de Serviços (PMS/IBGE) é um desafio por natureza: trata-se de uma série mensal, sujeita a volatilidade e choques que vão de fatores sazonais a mudanças estruturais no setor. Para enfrentar esse problema, realizamos um exercício de comparação entre três abordagens de modelagem: econometria tradicional (ARIMA), machine learning (XGBoost) e inteligência artificial (TimeGPT).

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.