Analisando os grupos do IPCA com o Python

A inflação é conhecida como o termo que representa a taxa de crescimento do nível geral de preços entre dois períodos distintos. No Brasil, o indicador que consolidou-se como o principal índice de preços é o Índice de Preços ao Consumidor Amplo (IPCA), divulgado pelo IBGE e amplamente utilizado pela autoridade monetária como referência para realizar o controle da inflação. Neste artigo mostramos como obter a contribuição de cada grupo do IPCA usando o Python.

O IPCA é divulgado mensalmente pelo IBGE, e podemos importar os dados diretamente do SIDRA, através de sua API. Para auxiliar no processo de extração de dados usamos a biblioteca sidrapy, que permite obtermos os dados inserindo os parâmetros sobre a API da tabela de interesse.

Aprenda a coletar, processar e analisar dados macroeconômicos no curso de Análise de Conjuntura usando o Python.

Nosso objetivo aqui será o de buscar a série de peso e variação de cada grupo do IPCA, e de posse dos dados, calculamos a contribuição de cada grupo sobre o IPCA. Ao fim, criamos um gráfico de barras que permite avaliarmos o IPCA por grupos.

IPCA Contribuição por grupo

O primeiro passo será buscar a série na plataforma do sidra de forma que possamos resgatar os códigos do parâmetros.

Uma vez obtida a API da tabela 1737, e seus respectivos códigos, utilizamos a função get_table para obter a série. A API que gerou os dados foi a seguinte: /t/7060/n1/all/v/63,66/p/all/c315/7170,7445,7486,7558,7625,7660,7712,7766,7786/d/v63%202,v66%204.

Abaixo, os últimos valores da tabela resultante após realizarmos as etapas de coleta, tratamento e manipulação de dados. De posse do dataframe apresentado, criamos o gráfico em seguida.

Código
variable date groups contribuicao
423 2023-12-01 1.Alimentação e bebidas 0.233151
424 2023-12-01 2.Habitação 0.052217
425 2023-12-01 3.Artigos de residência 0.028743
426 2023-12-01 4.Vestuário 0.033312
427 2023-12-01 5.Transportes 0.100522
428 2023-12-01 6.Saúde e cuidados pessoais 0.046640
429 2023-12-01 7.Despesas pessoais 0.048705
430 2023-12-01 8.Educação 0.014062
431 2023-12-01 9.Comunicação 0.001929

 

Através do gráfico acima podemos analisar quais grupos contribuíram positiva e negativamente para a variação mensal do IPCA no mês.

Quer aprender mais?

Clique aqui para fazer seu cadastro no Boletim AM e baixar o código que produziu este exercício, além de receber novos exercícios com exemplos reais de análise de dados envolvendo as áreas de Data Science, Econometria, Machine Learning, Macroeconomia Aplicada, Finanças Quantitativas e Políticas Públicas diretamente em seu e-mail.

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Analisando a ancoragem das expectativas de inflação no Python

Se expectativas de inflação ancoradas com a meta são importantes para a economia, analisar o grau de ancoragem é imperativo para economistas e analistas de mercado. Neste exercício mostramos uma forma de aplicar esta análise com uma metodologia desenvolvida pelo FMI. Desde a coleta dos dados, passando pelo modelo e pela visualização de dados, mostramos como analisar a política monetária usando o Python.

Como analisar a DRE de empresas de capital aberto usando o Python

Quando analisamos a demonstração de resultados de uma empresa listada na bolsa de valores, frequentemente recorremos a ferramentas convencionais, que embora sejam úteis, muitas vezes carecem de automação. É aqui que entra o Python. Neste post, exploramos o poder do Python para automatizar o processo de coleta, tratamento e análise dos dados da Demonstração do Resultado do Exercício (DRE) da Eletrobras, utilizando dados fornecidos pela CVM (Comissão de Valores Mobiliários).

Como construir uma Curva IS no Python

Neste post mostramos como podemos construir um modelo que descreve a Curva IS a partir da linguagem Python. Passamos por todo o processo de construção de um exercício de dados, realizando a coleta, o tratamento, a modelagem e a demonstração dos resultados encontrados.

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.