Análise de Portfólio com pyfolio

Portfolio em finanças é um conjunto de ativos financeiros, no qual o principal objetivo reside na diversificação. É sempre necessário demonstrar eficácia em sua montagem, minimizando o nível do risco incorrido e maximizando a performance. Para analisar se foi possível obter a eficácia, é necessário realizar testes de performance, e a biblioteca pyfolio, permite criar facilmente análises de performance e risco de carteiras de investimento e estratégias. Neste post, mostramos como é possível visualizar essas medidas construindo um portfolio e realizando o backtest com o pyfolio.

Como exemplo, criamos uma portfolio composto de cinco ações: ITUB4, PETR4, VALE3 e BRFS3, compreendendo os dias entre 2019-01-01 e 2022-07-11. Através do preços diários, calculamos os retornos simples das ações e construímos um Equal Weighted Portfólio, ou seja, uma carteira em que todas as ações possuem o mesmo peso de 25% do total investido.

Abaixo, mostramos os gráficos criados a partir das funções da biblioteca, realizando comparações com os retornos da Ibovespa durante o mesmo período. Todo o código e vídeo comentado da montagem do portfólio e dos gráficos são disponibilizados para membros do Clube AM.

Retorno Anualizado

É possível compreender como o portfólio performou em cada ano. A função cria automaticamente uma linha para da média do retorno no período.

Retorno Acumulado

Com o gráfico abaixo, compreendemos a evolução do retorno ao longo do tempo do portfólio. É possível comparar com a evolução do Ibovespa.

Drawdown

O drawdown é uma medida do declínio do pico histórico do ativo. É interessante para entender os períodos de turbulência do portfólio.

Beta móvel

Por fim, podemos visualizar o Beta de mercado do portfolio, isto é, o coeficiente que mede a relação da carteira com o mercado. É útil para entender o quanto o portfolio se movimenta com as oscilações do mercado, representando uma medida para a comparação com o risco sistemático de todo o mercado.

__________________________________________________

Quer saber mais?

Veja nosso curso de Python para Investimentos.

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Como selecionar variáveis para modelos de previsão no Python?

Em oposição à crença popular, grande parte dos modelos de machine learning não produzem previsões magicamente. É papel do cientista de dados executar uma boa engenharia de variáveis para não cair no clássico problema de “garbage in, garbage out” (GIGO) em aprendizado de máquina. Neste sentido, aprender a fazer uma boa seleção de variáveis é fundamental e neste artigo exploramos algumas possibilidades práticas usando o Python.

Resultado IPCA-15 - Novembro/2024

A Análise Macro apresenta os resultados do IPCA-15 de Novembro de 2024, com gráficos elaborados em Python para coleta, tratamento e visualização de dados. Todo o conteúdo, disponível exclusivamente no Clube AM, foi desenvolvido com base nos métodos ensinados nos cursos da Análise Macro, permitindo aos assinantes acesso aos códigos e replicação das análises.

Resultado PNADc Trimestral - 3° Trimestre/2024

A Análise Macro apresenta os resultados da PNADc Trimestral do 3º trimestre de 2024, com gráficos elaborados em Python para coleta, tratamento e visualização de dados. Todo o conteúdo, disponível exclusivamente no Clube AM, foi desenvolvido com base nos métodos ensinados nos cursos da Análise Macro, permitindo aos assinantes acesso aos códigos e replicação das análises.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.