Aplicação de PCA em finanças usando o R

A análise de componentes principais ou Principal component analysis, consiste em uma técnica popular que visa reduzir a dimensionalidade de um conjunto de variáveis. No post de hoje, iremos realizar uma aplicação da técnica em finanças utilizando o R.

O objetivo do uso da análise de componentes principais consiste em reduzir um número significante de variáveis que explicam uma variável resposta, de forma a encontrar a variabilidade em torno de cada variável latente, isto é, uma variável "oculta" que explica a variável resposta.

A partir disso é possível compreender quais as variáveis latentes, isto é, quantos fatores de risco representam a variabilidade de um conjunto de ações ou índices de investimentos.

Vejamos a aplicação utilizando o R. Selecionamos 6 ações, 3 compreendendo o setor de tecnologia e 3 o setor de financeiro. Ao aplicar o PCA, vemos o primeiro componente principal explica 54,19% da variabilidade dos retornos. Pelo gráfico abaixo, fica fácil de perceber que o PCA1 é apenas uma proxy do risco de mercado.

A construção de todos os procedimentos para a criação dos gráficos abaixo você pode obter fazendo parte do Clube AM, o repositório especial de códigos da Análise Macro.

 

Além disso, fica fácil perceber a relação dos fatores entre os ativos. Isso pode permitir o avanço na construção de uma carteira diversificada.

_____________________________________

Quer saber mais?

Veja nossa trilha de cursos de Finanças Quantitativas.

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Tratamento e transformação de séries temporais macroeconômicas para modelagem

"Garbage in, garbage out" é a regra de ouro na previsão macroeconômica. Antes de aplicar qualquer modelo de IA ou econometria para prever indicadores como o IPCA ou o PIB, existe um trabalho crucial de tratamento de dados. Neste post, abrimos os bastidores do nosso dashboard de previsões e mostramos o passo a passo para transformar dados brutos de múltiplas fontes (como BCB, IBGE e FRED) em séries prontas para modelagem. Veja como lidamos com diferentes frequências, aplicamos transformações e usamos metadados para criar um pipeline de dados robusto e automatizado.

Como planejar um pipeline de previsão macroeconômica: da coleta ao dashboard

Montar um pipeline de previsão macroeconômica não é apenas uma tarefa técnica — é um exercício de integração entre dados, modelos e automação. Neste post, apresento uma visão geral de como estruturar esse processo de ponta a ponta, da coleta de dados até a construção de um dashboard interativo, que exibe previsões automatizadas de inflação, câmbio, PIB e taxa Selic.

Coletando e integrando dados do BCB, IBGE e IPEA de forma automatizada

Quem trabalha com modelagem e previsão macroeconômica sabe o quanto é demorado reunir dados de diferentes fontes — Banco Central, IBGE, IPEA, FRED, IFI... Cada um com sua API, formato, frequência e estrutura. Esse gargalo de coleta e padronização consome tempo que poderia estar sendo usado na análise, nos modelos ou na comunicação dos resultados.

Foi exatamente por isso que criamos uma rotina de coleta automatizada, que busca, trata e organiza séries temporais econômicas diretamente das APIs oficiais, pronta para ser integrada a pipelines de previsão, dashboards ou agentes de IA econometristas.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.