Aplicação de PCA em finanças usando o R

A análise de componentes principais ou Principal component analysis, consiste em uma técnica popular que visa reduzir a dimensionalidade de um conjunto de variáveis. No post de hoje, iremos realizar uma aplicação da técnica em finanças utilizando o R.

O objetivo do uso da análise de componentes principais consiste em reduzir um número significante de variáveis que explicam uma variável resposta, de forma a encontrar a variabilidade em torno de cada variável latente, isto é, uma variável "oculta" que explica a variável resposta.

A partir disso é possível compreender quais as variáveis latentes, isto é, quantos fatores de risco representam a variabilidade de um conjunto de ações ou índices de investimentos.

Vejamos a aplicação utilizando o R. Selecionamos 6 ações, 3 compreendendo o setor de tecnologia e 3 o setor de financeiro. Ao aplicar o PCA, vemos o primeiro componente principal explica 54,19% da variabilidade dos retornos. Pelo gráfico abaixo, fica fácil de perceber que o PCA1 é apenas uma proxy do risco de mercado.

A construção de todos os procedimentos para a criação dos gráficos abaixo você pode obter fazendo parte do Clube AM, o repositório especial de códigos da Análise Macro.

 

Além disso, fica fácil perceber a relação dos fatores entre os ativos. Isso pode permitir o avanço na construção de uma carteira diversificada.

_____________________________________

Quer saber mais?

Veja nossa trilha de cursos de Finanças Quantitativas.

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Como se comportou a Taxa de Participação no Brasil nos últimos anos? Uma Análise com a Linguagem R

O objetivo deste estudo é analisar a evolução da Taxa de Participação no Brasil, contrastando-a com a Taxa de Desocupação e decompondo suas variações para entender os vetores (populacionais e de força de trabalho) que influenciam o comportamento atual do mercado de trabalho. Para isso, utilizamos a linguagem R em todo o processo, desde a coleta e o tratamento das informações até a visualização dos resultados, empregando os principais pacotes disponíveis no ecossistema da linguagem.

Como se comportou a inflação de serviços no Brasil nos últimos anos?

Uma análise econométrica da inflação de serviços no Brasil comparando os cenários de 2014 e 2025. Utilizando uma Curva de Phillips própria e estimativas da NAIRU via filtro HP, investigamos se o atual desemprego nas mínimas históricas repete os riscos do passado. Entenda como as expectativas de inflação e o hiato do desemprego explicam o comportamento mais benigno dos preços atuais em relação à década anterior.

Como se comportou o endividamento e a inadimplência nos últimos anos? Uma análise utilizando a linguagem R

Neste exercício realizamos uma análise sobre a inadimplência dos brasileiros no período recente, utilizando a linguagem R para examinar dados públicos do Banco Central e do IBGE. Investigamos a evolução do endividamento, da inadimplência e das concessões de crédito, contextualizando-os com as dinâmicas da política monetária (Taxa Selic) e do mercado de trabalho (renda e desemprego).

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.