Aplicações de Modelos de Volatilidade: Covariância Dinâmica usando GARCH

Os efeitos GARCH na volatilidade levam a uma variabilidade no tempo dos retornos. Essa variação no tempo tem um impacto direto na relação entre os retornos de dois ativos. Quando sua variância varia com o tempo, também sua covariância muda com o tempo. Portanto, é de interesse modelar essa dinâmica com o objetivo de conhecer a relação de dois ativos no tempo. Vamos realizar esse exercício utilizando o R e o Python como ferramentas.

Introdução

A covariância é uma ferramenta estatística usada para determinar a relação de movimento entre duas variáveis. Em finanças, as variáveis ​​podem ser retornos de preço de diferentes ativos. Uma covariância positiva significa que os preços de dois ativos tendem a se mover na mesma direção.  Uma covariância negativa significa que os preços dos ativos tendem a se mover na direção oposta.

Covariância Dinâmica com o GARCH

O modelo GARCH leva em consideração a variabilidade das características da volatilidade no tempo. A covariância dinâmica pode ser calculada multiplicando o coeficiente de correlação entre os retornos dos ativos por sua volatilidade a partir dos modelos GARCH. Para tanto, prosseguimos com quatro passos:

Para obter todo o código em R e Python para os exemplos abaixo, faça parte do Clube AM, o repositório de códigos da Análise Macro, contendo exercícios semanais.

1° passo

Ajustamos um modelo GARCH para os retornos de cada ativo e obtemos a volatilidade.

2° passo

Computa os resíduos padronizados do ajuste do modelo GARCH (as inovações \hat{a_{i,t}} divididas pela raiz da volatilidade estimada \sqrt{\hat{\sigma_{i,t}}})

3° passo

Calcula o coeficiente de correlação amostral simples entre os resíduos padronizados.

4° passo

Multiplica o coeficiente de correlação amostral simples dos ativos pelas volatilidades dos ativos.

    \[Cov_{t} = \rho \times \sigma_{1,t} \times \sigma_{2,t}\]

Exemplo

Vamos estimar a Covariância Dinâmica entre os retornos de duas ações: ITUB4 e MGLU3. Empregaremos o GARCH(1,1) obteremos a volatilidade e os resíduos padronizados estimados, calculamos a correlação entre os resíduos e obtemos a covariância dinâmica.

O gráfico abaixo expõe o valor da medida no tempo:

R

Python

_____________________

Quer saber mais?

Veja nossa trilha de cursos de Finanças Quantitativas

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Como usar automação com Python e IA na análise de ações

No cenário atual, profissionais de finanças buscam formas mais rápidas, eficientes e precisas para analisar dados e tomar decisões. Uma das grandes revoluções para isso é o uso combinado de Python, automação e modelos de linguagem grande (LLMs), como o Google Gemini. O dashboard que criamos é um ótimo exemplo prático dessa integração, reunindo dados, cálculos, visualizações e análise textual em um único ambiente.

Análise de ações com IA - um guia inicial

Neste artigo, você vai aprender a integrar IA na análise de ações de forma automatizada utilizando Python. Ao final, você terá um pipeline completo capaz de coletar dados de mercado, gerar gráficos, elaborar relatórios com linguagem natural.

Quais são as ferramentas de IA?

Um aspecto crucial dos Agentes de IA é a sua capacidade de tomar ações, que acontecem por meio do uso de Ferramentas (Tools). Neste artigo, vamos aprender o que são Tools, como defini-las de forma eficaz e como integrá-las ao seu Agente por meio da System Prompt. Ao fornecer as Tools certas para o seu Agente — e ao descrever claramente como essas Tools funcionam — você pode aumentar drasticamente o que sua IA é capaz de realizar.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.