Beta de mercado móvel com o Python

O Beta de mercado é um indicador que relaciona o risco de uma ação com o risco de mercado. Uma forma interessante de avaliar o coeficiente é através de seus valores ao longo do tempo, tomando com base janelas móveis de tamanho fixo. No post de hoje iremos mostrar como é possível obter o Beta de Mercado Móvel no Python.

O Beta de mercado, também chamado de coeficiente beta,  pode ser obtido através da seguinte equação:

     $$ r_{it} - Rf_{t} = \beta (Rm_{t} - Rf_{t})$$

Em que  r_{it} é o retorno do ativo i, Rf_{t} é o retorno da taxa de juros livre de risco e Rm_{t}, o retorno do índice de mercado, representando o risco sistemático. Através da equação, é possível obter o coeficiente beta, por meio de uma Regressão Linear via MQO.

A leitura do Beta permite entender o nível de relacionamento entre o ativo e o risco sistemático, isso é, a cada unidade de aumento do risco sistemático, o quanto os valores do ativo se movem.

  • Beta > 1 - A ação move-se em uma intensidade maior que a do mercado;
  • Beta < 1 - A ação move-se em uma intensidade menor que a do mercado;
  • Beta = 1 - A ação move-se igual ao índice de mercado;
  • Beta < 0 - A ação move-se em direção contrária ao índice de mercado.

Para capturar a dinâmica de mudança do mercado e do ativo ao longo do tempo, uma regressão móvel pode ser útil para entender momentos em que a ação é mais ou menos sensível ao risco de mercado. Portanto, é possível construir o gráfico abaixo, que mede o Beta (em azul) ao longo do tempo e os seus respectivos intervalos de confiança.

Para construir o gráfico, foi definido:

A construção de todos os procedimentos para a criação dos gráficos abaixo você pode obter fazendo parte do Clube AM, o repositório especial de códigos da Análise Macro.
  • Foi capturado os preços de fechamento da PETR4 e da IBOVESPA utilizando o Yahoo Finance como fonte.
  • Calculou-se o retorno líquido simples
  • Foi importado os dados da Selic por meio do código 4390, usando o python-bcb

Obteve-se a regressão móvel usando a biblioteca statsmodels. Como resultado, obteve-se o gráfico abaixo.


_____________________________________

Quer saber mais?

Veja nossa trilha de cursos de Finanças Quantitativas.

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Como Criar um Agente Analista para Dados da Inflação com LangGraph

Este post mostra como automatizar a análise da inflação brasileira com o uso de agentes inteligentes. Utilizando o LangGraph, integramos dados do IPCA, núcleos de inflação e grupos do índice para criar um sistema capaz de gerar análises econômicas automatizadas com base em consultas em linguagem natural.

Como Criar um Agente para Análise da Atividade Econômica com LangGraph

Este post mostra como automatizar a análise da atividade econômica brasileira com agentes inteligentes. Utilizando o framework LangGraph e dados do IBGE e Banco Central, construímos um sistema capaz de gerar respostas analíticas a partir de perguntas em linguagem natural, unindo automação de consultas SQL e interpretação econômica.

Introdução ao LangGraph

LangGraph é um framework em Python desenvolvido para gerenciar o fluxo de controle de aplicações que integram um modelo de linguagem (LLM). Com ele podemos construir Agentes de IA robustos e previsíveis.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.