Calculando o Historical VaR

O Historical Value at Risk é um método de calculo para mensurar da perda monetária de um determinado portfólio, utilizando como base os valores passados dos ativos e de seus respectivos retornos, criando uma série de Profits e Losses (P&L) que é tomada a um dado nível de intervalo para mensurar a perda potencial.

Assim como o Gaussian Value at Risk, o método Historical é uma das formas mais simples para se calcular o VaR. A diferença é que para o segundo método é necessário que haja mais dados. Neste post, iremos coletar dados de 4 ações para compor nosso portfólio, com dados diários de 1 de janeiro de 2013 até o dia atual.

Primeiro carregamos os pacotes, coletamos os preços e transformamos em retornos.

library(tidyquant)
library(timetk)
library(tidyverse)

 


# Define os ativos que irão ser coletados

tickers <- c("PETR4.SA", "ITUB4.SA", "ABEV3.SA", "JBSS3.SA")

# Define a data de início da coleta

start <- "2012-12-01"

# Realiza a coleta dos preços diários

prices <- getSymbols(tickers,
auto.assign = TRUE,
warnings = FALSE,
from = start,
src = "yahoo") %>%
map(~Cl(get(.))) %>%
reduce(merge) %>%
`colnames<-`(tickers)

# Calcula os retornos mensais

asset_returns <- Return.calculate(prices,
method = "log") %>%
na.omit()

 

Estaremos então interessados em conhecer o valor diário dos nossos ativos dentro do nosso portfólio. Podemos fazer isso através da função Return.portfolio(). A função calcula o retorno do nosso portfólio com base nos retornos dos nossos ativos. Por padrão, a função considera que temos um portfólio com pesos iguais (que é o que utilizaremos aqui, cada ativo terá o peso de 25%). Se utilizarmos o argumento verbose = TRUE, a função também calcula o peso e os valores dos ativos ao longo do tempo.

Suponha então que nosso portfólio possuía um valor monetário de 4563 no primeiro dia, a função retornará uma lista com os retornos do portfólio, os pesos dos ativos e os valores monetários ao longo do tempo.


# Calcula o retorno do portfolio

portfolio_returns <- Return.portfolio(asset_returns, verbose = TRUE, value = 4563)

# Calcular o valor

value <- portfolio_returns$EOP.Value * asset_returns

&nbsp;

p_l <- value[,1] + value[,2] + value[,3] + value[,4]

p_l <- `colnames<-`(p_l, "pl")

var_01_historical <- quantile(-p_l$pl, 0.99)

var_05_historical <- quantile(-p_l$pl, 0.95)

 

Calculamos o P&L como a soma dos valores diários dos ativos ponderados pelos seus respectivos retornos. Por fim, calculamos o quartil para o intervalo de confiança em 99% ou 95%.

 

________________________

(*) Para entender mais sobre Mercado Financeiro e medidas de risco, confira nosso curso de R para o Mercado Financeiro.
________________________

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Como usar automação com Python e IA na análise de ações

No cenário atual, profissionais de finanças buscam formas mais rápidas, eficientes e precisas para analisar dados e tomar decisões. Uma das grandes revoluções para isso é o uso combinado de Python, automação e modelos de linguagem grande (LLMs), como o Google Gemini. O dashboard que criamos é um ótimo exemplo prático dessa integração, reunindo dados, cálculos, visualizações e análise textual em um único ambiente.

Análise de ações com IA - um guia inicial

Neste artigo, você vai aprender a integrar IA na análise de ações de forma automatizada utilizando Python. Ao final, você terá um pipeline completo capaz de coletar dados de mercado, gerar gráficos, elaborar relatórios com linguagem natural.

Quais são as ferramentas de IA?

Um aspecto crucial dos Agentes de IA é a sua capacidade de tomar ações, que acontecem por meio do uso de Ferramentas (Tools). Neste artigo, vamos aprender o que são Tools, como defini-las de forma eficaz e como integrá-las ao seu Agente por meio da System Prompt. Ao fornecer as Tools certas para o seu Agente — e ao descrever claramente como essas Tools funcionam — você pode aumentar drasticamente o que sua IA é capaz de realizar.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.