CDI vs. Selic

A Selic e o CDI são taxas utilizadas para o cálculo das atividades financeiras e de investimento no país. Historicamente, as taxas são altamente correlacionadas, entretanto, apesar dessa medida estatística, podemos inferir a causalidade de uma taxa sobre a outra? Como é possível entender o relacionamento entre estas duas variáveis? No post de hoje, realizamos uma análise da SELIC e do CDI utilizando o R.

Correlação é um cálculo estatístico extremamente útil para entender o relacionamento entre duas variáveis distintas. Entretanto, muitas vezes, utiliza-se o cálculo de forma a implicar causalidades, o que não é correto. A causalidade é uma ligação de causa e efeito e que se mostra de difícil observação.

Ao averiguar a correlação entre as duas taxas, devemos antes entendê-las e ver como as duas podem estar interligadas.

  • "A taxa Selic refere-se à taxa de juros apurada nas operações de empréstimos de um dia entre as instituições financeiras que utilizam títulos públicos federais como garantia. O BC opera no mercado de títulos públicos para que a taxa Selic efetiva esteja em linha com a meta da Selic definida na reunião do Comitê de Política Monetária do BC (Copom)."
  • O CDI é um titulo emitido quando um banco empresta dinheiro ao outro. Isto, porque ao final do exercício, os bancos comerciais devem apresentar uma quantidade de caixa pré-estabelecida pelo Banco Central. Essas operações de títulos de um dia resultam na Taxa DI.

Antes de analisar visualmente e realizar o cálculo da correlação, importamos os dados das duas taxas utilizando o pacote {rbcb}, utilizando a função get_series() inserindo os códigos das séries obtidos através do Sistema Gerenciador de Séries Temporais. Buscamos as séries:

  • Taxa de juros - Selic anualizada base 252 % a.a.
  • Taxa de juros - CDI anualizada base 252 % a.a.

Abaixo, podemos entender os dados históricos da Selic e do CDI, e vemos que a duas taxas percorrem caminhos extremamente iguais.

As duas taxas são perfeitamente correlacionadas e positivas. Entretanto, ao analisar em periodicidade mensal, vemos que há uma mudança na relação. Antes de 2018, houve períodos em que as duas taxas eram negativamente correlacionadas.

A alteração na relação ocorreu devido a mudanças na apuração da Taxa DI. De acordo com o site da B3:

"A partir de 01/10/2018, a metodologia para apuração da Taxa DI se baseia na observação ou não das duas condições abaixo:

  • O número de operações elegíveis para o cálculo da Taxa DI for igual ou superior a 100 (cem); e
  • O somatório dos volumes das operações elegíveis para o cálculo da Taxa DI for igual ou superior a R$ 30 (trinta) bilhões;

Se no dia de apuração da Taxa DI, ao menos uma das duas condições relacionadas nos itens I e II acima não for observada, a Taxa DI será igual à Taxa Selic Over divulgada no dia."

Deste modo, conseguimos entender os períodos em que as taxas possuíam uma diferença em seus valores, e que explicam a correlação negativa. Essa diferença é chamada de spread e é calculada a partir da diferença da SELIC com o CDI.

 

Realizado as considerações, podemos então estabelecer as causas da alta correlação entre as duas taxas, bem como ambas são formadas e como a Taxa Selic afeta o CDI.

__________________________________________________

Quer saber mais?

Veja nossos cursos da trilha de Finanças Quantitativas.

_________________________________________________

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Criando operações SQL com IA Generativa no R com querychat

No universo da análise de dados, a velocidade para obter respostas é um diferencial competitivo. Frequentemente, uma simples pergunta de negócio — “Qual foi nosso produto mais vendido no último trimestre na região Nordeste?” — inicia um processo que envolve abrir o RStudio, escrever código dplyr ou SQL, executar e, finalmente, obter a resposta. E se pudéssemos simplesmente perguntar isso aos nossos dados em português, diretamente no nosso dashboard Shiny?

Dashboard Financeiro com IA e Shiny Python: Análise de Dados Abertos da CVM

Este artigo apresenta um tutorial completo sobre como construir uma ferramenta de análise financeira de ponta. Utilizando Shiny for Python, demonstramos a automação da coleta de dados das Demonstrações Financeiras Padronizadas (DFP) da CVM e o tratamento dessas informações com Pandas. O ponto alto do projeto é a integração da IA Generativa do Google Gemini, que atua como um assistente de análise, interpretando os dados filtrados pelo usuário e fornecendo insights contábeis e financeiros em tempo real. O resultado é um dashboard dinâmico que democratiza a análise de dados complexos e acelera a tomada de decisão.

Econometria, ML ou IA para previsão da PMS?

Prever a Pesquisa Mensal de Serviços (PMS/IBGE) é um desafio por natureza: trata-se de uma série mensal, sujeita a volatilidade e choques que vão de fatores sazonais a mudanças estruturais no setor. Para enfrentar esse problema, realizamos um exercício de comparação entre três abordagens de modelagem: econometria tradicional (ARIMA), machine learning (XGBoost) e inteligência artificial (TimeGPT).

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.