Coletando dados de ações, FII, FIDICS, ETFs e BDRs com o pacote {rb3}

O acesso a dados em geral tem se tornado cada mais simples nos últimos tempos e essa questão também engloba os dados financeiros e econômicos. A B3 é conhecida como a principal Bolsa de Valores do Brasil, e em seu site disponibiliza diversos dados, entretanto, para quem ainda é iniciante neste mundo, ainda pode encontrar dificuldades em baixar, bem como automatizar todo processo de obtenção. Para tanto, foi criado o pacote {rb3}, criado por Wilson Freitas e Marcelo S. Perlin com o intuito de tornar o trabalho mais simples. Neste post, apresentaremos apenas uma parte dos dados que podemos importar com o pacote, buscando dados de ações, FIIs, FIDICs, ETFs e BDRs.

Para retirar os dados é simples: importamos os pacotes necessários e utilizamos a função cotahist_get(), que possibilita baixar as cotações históricas completas de diversos tipos de ativos em determinado dia. É possível especificar se a partir da data de escolha, será realizado a importação do dia, do mês e do ano em diante.

Salvamos os dados no objeto ch, que conterá as informações de preços históricos de todos os ativos disponibilizados com diversas informações em formato de lista.

Para tornar o processo de manipulação simples, foi criado funções extracts, que permitem extrair informações da lista referente aos ativos desejados. Abaixo, mostramos as funções de extração.

É extremamente simples obter os dados, não? Agora, podemos visualizar e realizar uma análise. Abaixo, escolhemos os dados de ETFs para calcular o retorno do período para todos os ativos. Em seguida, separamos os cinco melhores retornos e os cinco piores retorno e visualizamos através de um gráfico de coluna.


__________________________________________________

Quer saber mais?

Veja nossos cursos da trilha de Finanças Quantitativas.

_________________________________________________

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Automatizando a Construção de Códigos em Python com LangGraph

Neste post, mostramos como construir um agente de código em Python utilizando LangGraph, LangChain e Gemini. A proposta é construir um protótipo para automatizar o ciclo completo de geração, execução e correção de código com o uso de LLMs, organizando o processo em um grafo de estados.

Análise de Dados com REPL Tool e LLM usando LangGraph

Neste post, vamos mostrar como você pode criar um agente que interpreta e executa código Python em tempo real, utilizando o REPL-Tool e um LLM da família Gemini. Começamos com um exemplo genérico e, em seguida, aplicamos a mesma estrutura à análise econômica de uma série histórica do IPCA.

Frameworks para criar AI Agents

Neste post, vamos dar o primeiro passo rumo à construção de Agentes de IA mais sofisticados, capazes de tomar decisões, interagir com ferramentas externas e lidar com tarefas complexas. Para isso, precisamos entender o papel dos frameworks agenticos (ou agentic frameworks) e como eles podem facilitar esse processo. Aqui introduzimos dois frameworks populares de desenvolvimento de Agentes de IA.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.