Coletando dados de ações, FII, FIDICS, ETFs e BDRs com o pacote {rb3}

O acesso a dados em geral tem se tornado cada mais simples nos últimos tempos e essa questão também engloba os dados financeiros e econômicos. A B3 é conhecida como a principal Bolsa de Valores do Brasil, e em seu site disponibiliza diversos dados, entretanto, para quem ainda é iniciante neste mundo, ainda pode encontrar dificuldades em baixar, bem como automatizar todo processo de obtenção. Para tanto, foi criado o pacote {rb3}, criado por Wilson Freitas e Marcelo S. Perlin com o intuito de tornar o trabalho mais simples. Neste post, apresentaremos apenas uma parte dos dados que podemos importar com o pacote, buscando dados de ações, FIIs, FIDICs, ETFs e BDRs.

Para retirar os dados é simples: importamos os pacotes necessários e utilizamos a função cotahist_get(), que possibilita baixar as cotações históricas completas de diversos tipos de ativos em determinado dia. É possível especificar se a partir da data de escolha, será realizado a importação do dia, do mês e do ano em diante.

Salvamos os dados no objeto ch, que conterá as informações de preços históricos de todos os ativos disponibilizados com diversas informações em formato de lista.

Para tornar o processo de manipulação simples, foi criado funções extracts, que permitem extrair informações da lista referente aos ativos desejados. Abaixo, mostramos as funções de extração.

É extremamente simples obter os dados, não? Agora, podemos visualizar e realizar uma análise. Abaixo, escolhemos os dados de ETFs para calcular o retorno do período para todos os ativos. Em seguida, separamos os cinco melhores retornos e os cinco piores retorno e visualizamos através de um gráfico de coluna.


__________________________________________________

Quer saber mais?

Veja nossos cursos da trilha de Finanças Quantitativas.

_________________________________________________

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Como usar Modelos de Linguagem no R com o pacote {elmer}

Na análise de dados contemporânea, o uso de Modelos de Linguagem (LLMs) vem se consolidando como uma ferramenta poderosa para automatizar e aprimorar tarefas analíticas. Ao integrarmos LLMs a pacotes como o ellmer, podemos ampliar nossas capacidades de extração, interpretação e automação de dados no ambiente R. Neste post, exploramos o papel desses modelos e detalhamos como o ellmer opera dentro do universo da linguagem de programação R.

Introdução ao AutoGen: Agentes Inteligentes na Análise Financeira

O AutoGen é um framework da Microsoft que permite criar agentes de IA colaborativos. Na área financeira, pode automatizar a coleta de dados, cálculos de indicadores e geração de relatórios. Este artigo apresenta os conceitos básicos e um exemplo aplicado a ações de empresas.

Como usar LangGraph e LLMs para prever a inflação no Brasil

Este post apresenta um estudo de caso sobre como utilizar o LangGraph e modelos de linguagem para estruturar um sistema multiagente voltado à previsão do IPCA. O exercício cria um sistema que utiliza-se de personas analíticas que trabalham em paralelo, permitindo validar previsões, calcular métricas de erro e consolidar relatórios automatizados. A abordagem demonstra como fluxos multiagentes podem apoiar a análise econômica, oferecendo múltiplas perspectivas e maior consistência nos resultados.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.