Coletando e visualizando preços de commodities no R

No Brasil, é comum acompanhar preços de commodities, afinal, qualquer mudança desses ativos afeta a vida dos brasileiros, seja diretamente ou indiretamente, mesmo para quem não atue no mercado financeiro. No post de hoje, vamos mostrar como é possível coletar dados de commodities e visualizá-los no R.

library(quantmod)
library(tidyverse)
library(timetk)

Após o carregamento dos pacotes, iremos criar os vetores com os tickers dos ativos que iremos coletar. Utilizaremos como fonte o Yahoo Finance, portanto, devemos encontrar os símbolos para a coleta no site.

# Define os tickers que iremos coletar

tickers <- c("KC=F", "NG=F", "CL=F", "SB=F")

Com os símbolos em mãos, podemos retirar os preços a partir do ano de interesse (aqui a partir de 2019), utilizando a função getSymbols(). Em seguida, podemos tratar os dados pegando somente os dados de fechamento e juntando em um só tibble os preços das quatro commodities.

Após isso, transformamos nosso conjunto de dados no formato long, de forma que fique mais fácil utilizar o ggplot para a visualiza-los.

# Retira os preços do Yahoo Finance e realiza o tratamento

prices <- getSymbols(tickers, src = "yahoo",
                     from = "2019-01-01") %>%
  map(~Cl(get(.))) %>% 
  reduce(merge) %>% 
  `colnames<-` (c("Coffee Mar 22", "Natural Gas Dec 21", "Crude Oil", "Sugar #11 Mar 22")) %>% 
  tk_tbl(preserve_index = TRUE,
         rename_index = "date") %>% 
  drop_na()

# Transforma em formato long

prices_long <- prices %>% 
  pivot_longer(cols = -date,
               values_to = "price")


# Plota os preços

prices_long %>% 
ggplot(aes(x = date, y = price, colour = name))+
  geom_line()+
  labs(title = "Preços de Commodities em US$",
       x = "$",
       y = "",
       caption = "Fonte: Yahoo Finance")

Como podemos ver, houve uma escalada de preços do café no ano de 2021. Também é possível notar o momento em que o preço do petróleo cru ficou negativo em abril de 2020.

________________________

(*) Para entender mais sobre Mercado Financeiro e aprender como realizar a coleta, tratamento e visualização de dados financeiros, confira nosso curso R para o Mercado Financeiro.

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Como usar automação com Python e IA na análise de ações

No cenário atual, profissionais de finanças buscam formas mais rápidas, eficientes e precisas para analisar dados e tomar decisões. Uma das grandes revoluções para isso é o uso combinado de Python, automação e modelos de linguagem grande (LLMs), como o Google Gemini. O dashboard que criamos é um ótimo exemplo prático dessa integração, reunindo dados, cálculos, visualizações e análise textual em um único ambiente.

Análise de ações com IA - um guia inicial

Neste artigo, você vai aprender a integrar IA na análise de ações de forma automatizada utilizando Python. Ao final, você terá um pipeline completo capaz de coletar dados de mercado, gerar gráficos, elaborar relatórios com linguagem natural.

Quais são as ferramentas de IA?

Um aspecto crucial dos Agentes de IA é a sua capacidade de tomar ações, que acontecem por meio do uso de Ferramentas (Tools). Neste artigo, vamos aprender o que são Tools, como defini-las de forma eficaz e como integrá-las ao seu Agente por meio da System Prompt. Ao fornecer as Tools certas para o seu Agente — e ao descrever claramente como essas Tools funcionam — você pode aumentar drasticamente o que sua IA é capaz de realizar.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.