Como analisar dados financeiros com o Python? Um exercício para quem deseja sair do Excel

Praticar análise de dados com uma linguagem de programação pode parecer intimidante, mas não é. Neste post, apresentamos os resultados de um exercício de Python voltado para finanças, demonstrando um gráfico útil para profissionais do mercado financeiro.

Introdução

Existem várias abordagens para realizar análises de dados, e embora a escolha da ferramenta seja importante, algumas oferecem mais facilidade, enquanto outras proporcionam maior flexibilidade. Às vezes, essa flexibilidade pode tornar as coisas mais fáceis, como é o caso do Python para limpeza de dados e cálculos financeiros.

Para obter o código e o tutorial deste exercício faça parte do Clube AM e receba toda semana os códigos em R/Python, vídeos, tutoriais e suporte completo para dúvidas.

Alunos inscritos no curso de Mercado Financeiro e Gestão de Portfólio com o Python têm a oportunidade de adquirir conhecimento em todas as etapas a seguir, além de obter uma compreensão teórica abrangente das principais ferramentas utilizadas no Mercado Financeiro.

Analisando as ações brasileiras

Vamos considerar um exemplo prático: suponha que desejamos obter os dados de todas as ações que compõem o índice Bovespa, calcular o retorno anualizado para o ano de 2024 e comparar as maiores altas e baixas. Essa comparação pode ser facilmente visualizada por meio de um gráfico.

Pode parecer desafiador para iniciantes, mas aqui está a boa notícia: para realizar essa análise, utilizamos apenas três bibliotecas: pandas para manipulação de dados, yfinance para coleta de dados e plotnine para visualização. Na verdade, a maioria das análises não requer mais do que essas ferramentas básicas.

Abaixo, exibimos o gráfico resultante da análise realizada no Python:

Quer aprender mais?

Clique aqui para fazer seu cadastro no Boletim AM e baixar o código que produziu este exercício, além de receber novos exercícios com exemplos reais de análise de dados envolvendo as áreas de Data Science, Econometria, Machine Learning, Macroeconomia Aplicada, Finanças Quantitativas e Políticas Públicas diretamente em seu e-mail.

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

As diferentes formas de avaliar o erro de um modelo de previsão

Existem tantas siglas para métricas de desempenho de modelos preditivos que é fácil se perder na sopa de letrinhas. Neste artigo, fornecemos uma visão geral das principais métricas para avaliar e comparar modelos de regressão e classificação, usando exemplos com dados em Python.

Previsão do CPI usando text mining

Exploramos neste exercício, de forma similar a Ferreira (2022), a utilidade de tópicos latentes extraídos dos comunicados do FOMC, por um modelo LDA, na previsão da inflação norte-americana, medida pelo CPI. O objetivo é comparar um modelo econométrico simples, tal como um AR-GAP de Faust e Wright (2013), em especificações com e sem os fatores textuais.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.