Como retirar desdobramentos e dividendos do preço de ações através do R

Em grande maioria, fontes de dados financeiros disponibilizam série de preços de ativos financeiros já ajustados de acordo com mudanças ocorridas tanto por desdobramentos, quanto por dividendos recebidos. No post de hoje vamos utilizar o pacote {quantmod} para retirar esses valores de uma série de preços de uma
ação.

library(quantmod)
library(magrittr)

Vamos utilizar como exemplo a série de preços das ações da MGLu3, isso porque em outubro de 2020 ocorreu o desdobramento de suas ações. Primeiro iremos visualizar o preço de fechamento já ajustado.

getSymbols("MGLU3.SA",
                     auto.assign = TRUE,
                     from = "2020-01-01",
                     to = "2020-12-31")

plot(Ad(MGLU3.SA))

Mas, e se quisermos saber a série de preços antes do desdobramentos, quando ocorreu, bem como o mesmo para os dividendos, além de seus valores? Utilizaremos as funções getSplits() e getDividends(), respectivamente, para efetuar esse trabalho.

splits <- getSplits("MGLU3.SA",
                    from = "2020-01-01",
                     to = "2020-12-31")


dividends <- getDividends("MGLU3.SA", 
                          split.adjust = FALSE,
                          from = "2020-01-01",
                          to = "2020-12-31")

Em seguida, utilizaremos a função adjRatios() com a série de fechamento da ação para que possamos ter a relação do desdobramento e dos dividendos ao longo do tempo.

close <- Cl(MGLU3.SA)


ratios <- adjRatios(splits = splits,
                    dividends = dividends,
                    close = close)

Por fim, calculamos todos esses ajustes de forma a obter a série de preços "crua".

close_mglu <- close * ratios[, "Split"] * ratios[, "Div"]


plot(close_mglu)

Para tornar o caminho mais simples, o {quantmod} também disponibiliza uma função que torna a série "crua" de forma mais fácil.

mglu_adj <- adjustOHLC(MGLU3.SA, symbol.name = "MGLU3.SA")

plot(Cl(mglu_adj))

________________________
(*) Para entender mais sobre Mercado Financeiro e aprender como realizar a coleta, tratamento e visualização de dados financeiros, confira nosso curso de R para o Mercado Financeiro.

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Aplicando o Time Series Transformer para prever inflação (IPCA)

Neste exercício, exploramos a previsão de séries temporais utilizando o Temporal Fusion Transformer (TFT). O TFT é uma arquitetura de Deep Learning baseada em mecanismos de atenção, desenhada especificamente para lidar com múltiplas variáveis e horizontes de previsão longos, mantendo a interpretabilidade — uma característica frequentemente ausente em modelos de "caixa-preta".

Análise do Payroll norte-americano com Python

O Payroll norte-americano é o termômetro da economia global. No post de hoje, mostro como analisar esse indicador usando Python e as bibliotecas Pandas e Plotnine. Saia do básico e aprenda a visualizar a geração de empregos nos EUA de forma profissional.

O papel da credibilidade do Banco Central na desinflação da economia

O objetivo deste trabalho é mensurar a credibilidade da política monetária brasileira através de diferentes métricas e verificar empiricamente se uma maior credibilidade contribui para a redução da inflação. Realizamos a modelagem econométrica usando o pacote {systemfit} disponível na linguagem. Ao fim, criamos um relatório reprodutível com a combinação Quarto + R.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.