Como retirar desdobramentos e dividendos do preço de ações através do R

Em grande maioria, fontes de dados financeiros disponibilizam série de preços de ativos financeiros já ajustados de acordo com mudanças ocorridas tanto por desdobramentos, quanto por dividendos recebidos. No post de hoje vamos utilizar o pacote {quantmod} para retirar esses valores de uma série de preços de uma
ação.

library(quantmod)
library(magrittr)

Vamos utilizar como exemplo a série de preços das ações da MGLu3, isso porque em outubro de 2020 ocorreu o desdobramento de suas ações. Primeiro iremos visualizar o preço de fechamento já ajustado.

getSymbols("MGLU3.SA",
                     auto.assign = TRUE,
                     from = "2020-01-01",
                     to = "2020-12-31")

plot(Ad(MGLU3.SA))

Mas, e se quisermos saber a série de preços antes do desdobramentos, quando ocorreu, bem como o mesmo para os dividendos, além de seus valores? Utilizaremos as funções getSplits() e getDividends(), respectivamente, para efetuar esse trabalho.

splits <- getSplits("MGLU3.SA",
                    from = "2020-01-01",
                     to = "2020-12-31")


dividends <- getDividends("MGLU3.SA", 
                          split.adjust = FALSE,
                          from = "2020-01-01",
                          to = "2020-12-31")

Em seguida, utilizaremos a função adjRatios() com a série de fechamento da ação para que possamos ter a relação do desdobramento e dos dividendos ao longo do tempo.

close <- Cl(MGLU3.SA)


ratios <- adjRatios(splits = splits,
                    dividends = dividends,
                    close = close)

Por fim, calculamos todos esses ajustes de forma a obter a série de preços "crua".

close_mglu <- close * ratios[, "Split"] * ratios[, "Div"]


plot(close_mglu)

Para tornar o caminho mais simples, o {quantmod} também disponibiliza uma função que torna a série "crua" de forma mais fácil.

mglu_adj <- adjustOHLC(MGLU3.SA, symbol.name = "MGLU3.SA")

plot(Cl(mglu_adj))

________________________
(*) Para entender mais sobre Mercado Financeiro e aprender como realizar a coleta, tratamento e visualização de dados financeiros, confira nosso curso de R para o Mercado Financeiro.

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Como Medir o Ciclo das Concessões de Crédito usando Python

Este artigo apresenta uma análise quantitativa da relação entre o ciclo de concessões de crédito, a atividade econômica e a política monetária no Brasil. Utilizando a linguagem Python, o estudo aplica técnicas de decomposição de séries temporais (X13-ARIMA e Filtro HP) para isolar os componentes cíclicos dos dados. Os resultados da modelagem econométrica confirmam a pro-ciclicidade do crédito em relação ao hiato do produto e sua sensibilidade às variações no hiato da taxa de juros real.

Choque de juros e renda em bens duráveis e não duráveis usando Python

Este artigo analisa a dinâmica do consumo no Brasil utilizando Python e modelos de Vetores Autorregressivos (VAR). Ao segregar bens duráveis e não duráveis, o estudo quantifica a sensibilidade a choques de juros e renda. Criamos todo o processo através do ciclo de dados: coleta, tratamento, análise de dados, modelagem e apresentação dos resultados, tudo automatizado usando a linguagem Python.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.