Como usar o Python para Analisar a DRE de uma empresa?

Quando analisamos a demonstração de resultados de uma empresa listada na bolsa de valores, frequentemente recorremos a ferramentas convencionais, que embora sejam úteis, muitas vezes carecem de automação. É aqui que entra o Python. Neste post, exploramos o poder do Python para automatizar o processo de coleta, tratamento e análise dos dados da Demonstração do Resultado do Exercício (DRE) da Copel, utilizando dados fornecidos pela CVM.

Análise de demonstrações financeiras

A Análise de demonstrações financeiras permite que se extraia, dos demonstrativos contábeis apurados e divulgados por uma empresa, informações úteis sobre o seu desempenho econômico- financeiro, podendo atender aos objetivos de análise dos investidores, credores, concorrentes, empregados, governo etc.

Insumos

Relatórios contábeis elaborados periodicamente pelas empresas.

Lei das Sociedades por Ações:

Balanço Patrimonial; Demonstração do Resultado do Exercício; Demonstração dos Fluxos de Caixa; Demonstração das Mutações do Patrimônio Líquido; Demonstração do Valor Adicionado

Uma companhia de capital aberto deve apurar as seguintes demonstrações em atendimento às exigências da Comissão de Valores Mobiliários (CVM), B3 e seus acionistas:

Demonstrações Financeiras Padronizadas (DFP) – Este documento é composto por todos os demonstrativos financeiros referentes ao exercício social encerrado, e deve ser encaminhado ao final de cada trimestre de cada ano à CVM e à B3.

Acesso: https://dados.cvm.gov.br/dataset/cia_aberta-doc-dfp

Informações e Resultados Trimestrais (ITR) – São elaborados e enviados por todas as companhias listadas em Bolsa de Valores para a CVM e B3 todo trimestre. A ITR tem por finalidade permitir que o investidor acompanhe o desempenho da empresa no trimestre.

Acesso: https://dados.cvm.gov.br/dataset/cia_aberta-doc-itr

Estudo de Caso: DRE da Copel

Para obter o código e o tutorial deste exercício faça parte do Clube AM e receba toda semana os códigos em R/Python, vídeos, tutoriais e suporte completo para dúvidas.

Aprenda a coletar, processar e analisar dados do mercado financeiro no curso de Análise de Demonstrativos Financeiros usando o Python.

Podemos utilizar como exemplo a Demonstração do Resultado do Exercício da Copel, através de um processo simples por meio da linguagem de programação Python:

  • Coleta de dados da DFP através do site https://dados.cvm.gov.br/dataset/cia_aberta-doc-dfp
  • Tratamento de dados, retirando colunas e linhas desnecessárias, e manipulando a formatação da melhor forma possível para comunicar os resultados;
  • Apresentação dos resultados, através da construção de uma tabela que exibe as principais contas da DRE ao longos dos anos, acompanhado da Análise Horizontal.

O resultado da tabela criada usando o Python pode ser verificado abaixo:

Quer aprender mais?

Clique aqui para fazer seu cadastro no Boletim AM e baixar o código que produziu este exercício, além de receber novos exercícios com exemplos reais de análise de dados envolvendo as áreas de Data Science, Econometria, Machine Learning, Macroeconomia Aplicada, Finanças Quantitativas e Políticas Públicas diretamente em seu e-mail.

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Coletando dados regionais do CAGED no Python

Os dados regionais do CAGED permitem analisar o mercado de trabalho de forma detalhada, em termos de setores, educação, rendimento e características pessoais dos trabalhadores brasileiros. Neste exercício mostramos como acessar estas informações online via Python.

Coletando dados de Setores Censitários do Censo 2022 no Python

Dados sobre a demografia e o território são primordiais para definir e implementar políticas públicas, áreas de atuação comercial e/ou estratégias de marketing. Sendo assim, saber usar os dados do Censo 2022 pode trazer vantagens competitivas. Neste exercício mostramos como obter os dados da Malha de Setores Censitários no formato vetorial (GeoJson) usando o Python.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.