Como usar o Python para Analisar a DRE de uma empresa?

Quando analisamos a demonstração de resultados de uma empresa listada na bolsa de valores, frequentemente recorremos a ferramentas convencionais, que embora sejam úteis, muitas vezes carecem de automação. É aqui que entra o Python. Neste post, exploramos o poder do Python para automatizar o processo de coleta, tratamento e análise dos dados da Demonstração do Resultado do Exercício (DRE) da Copel, utilizando dados fornecidos pela CVM.

Análise de demonstrações financeiras

A Análise de demonstrações financeiras permite que se extraia, dos demonstrativos contábeis apurados e divulgados por uma empresa, informações úteis sobre o seu desempenho econômico- financeiro, podendo atender aos objetivos de análise dos investidores, credores, concorrentes, empregados, governo etc.

Insumos

Relatórios contábeis elaborados periodicamente pelas empresas.

Lei das Sociedades por Ações:

Balanço Patrimonial; Demonstração do Resultado do Exercício; Demonstração dos Fluxos de Caixa; Demonstração das Mutações do Patrimônio Líquido; Demonstração do Valor Adicionado

Uma companhia de capital aberto deve apurar as seguintes demonstrações em atendimento às exigências da Comissão de Valores Mobiliários (CVM), B3 e seus acionistas:

Demonstrações Financeiras Padronizadas (DFP) – Este documento é composto por todos os demonstrativos financeiros referentes ao exercício social encerrado, e deve ser encaminhado ao final de cada trimestre de cada ano à CVM e à B3.

Acesso: https://dados.cvm.gov.br/dataset/cia_aberta-doc-dfp

Informações e Resultados Trimestrais (ITR) – São elaborados e enviados por todas as companhias listadas em Bolsa de Valores para a CVM e B3 todo trimestre. A ITR tem por finalidade permitir que o investidor acompanhe o desempenho da empresa no trimestre.

Acesso: https://dados.cvm.gov.br/dataset/cia_aberta-doc-itr

Estudo de Caso: DRE da Copel

Para obter o código e o tutorial deste exercício faça parte do Clube AM e receba toda semana os códigos em R/Python, vídeos, tutoriais e suporte completo para dúvidas.

Aprenda a coletar, processar e analisar dados do mercado financeiro no curso de Análise de Demonstrativos Financeiros usando o Python.

Podemos utilizar como exemplo a Demonstração do Resultado do Exercício da Copel, através de um processo simples por meio da linguagem de programação Python:

  • Coleta de dados da DFP através do site https://dados.cvm.gov.br/dataset/cia_aberta-doc-dfp
  • Tratamento de dados, retirando colunas e linhas desnecessárias, e manipulando a formatação da melhor forma possível para comunicar os resultados;
  • Apresentação dos resultados, através da construção de uma tabela que exibe as principais contas da DRE ao longos dos anos, acompanhado da Análise Horizontal.

O resultado da tabela criada usando o Python pode ser verificado abaixo:

Quer aprender mais?

Clique aqui para fazer seu cadastro no Boletim AM e baixar o código que produziu este exercício, além de receber novos exercícios com exemplos reais de análise de dados envolvendo as áreas de Data Science, Econometria, Machine Learning, Macroeconomia Aplicada, Finanças Quantitativas e Políticas Públicas diretamente em seu e-mail.

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

O que é e como funcionam Sistemas Multi-Agentes

Sistemas multi-agentes (MAS) representam uma nova forma de estruturar aplicações de inteligência artificial, especialmente úteis para lidar com problemas complexos e distribuídos. Em vez de depender de um único agente generalista, esses sistemas são compostos por múltiplos agentes especializados que colaboram, competem ou se coordenam para executar tarefas específicas. Neste post, explicamos o que são os MAS, seus principais componentes (como LLMs, ferramentas e processos) e as arquiteturas mais comuns.

O que é um Vector Database e como criar um com LangChain

Nesta postagem, mostramos como construir um pipeline simples de RAG (Retrieval-Augmented Generation) usando o LangChain, o modelo Gemini 2.0 Flash e o Vector Database Chroma. Utilizamos como exemplo o Relatório de Inflação de junho de 2025 do Banco Central do Brasil. O fluxo envolve o download e leitura do PDF, divisão do texto com RecursiveCharacterTextSplitter, geração de embeddings com Gemini, armazenamento vetorial com Chroma e busca semântica para responder perguntas com base no conteúdo do relatório. É uma aplicação prática e didática para economistas que desejam integrar IA ao seu fluxo de análise.

Automatizando a Construção de Códigos em Python com LangGraph

Neste post, mostramos como construir um agente de código em Python utilizando LangGraph, LangChain e Gemini. A proposta é construir um protótipo para automatizar o ciclo completo de geração, execução e correção de código com o uso de LLMs, organizando o processo em um grafo de estados.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.