Construindo um Dashboard de medidas de Desvio-Padrão no Python

Vamos continuar a série de postagens sobre como construir um Dashboard de métricas relacionadas a avaliação de ações e construção de um Portfolio de investimentos no Python. Trazemos nessa semana um componente importante para avaliação do risco: o cálculo do Desvio Padrão.

Desvio Padrão como medida de Volatilidade

A volatilidade é uma medida de risco que indica o grau de variação dos retornos de um ativo ou portfolio em relação à sua média. Para calcular a volatilidade de um ativo individual, utilizamos a seguinte fórmula:
σ = √(∑(ri - r)^2 / (n - 1))

Onde σ é a volatilidade, ri é o retorno do ativo no período i, r é a média dos retornos e n é o número de observações.

Já para calcular a volatilidade de um portfolio, a fórmula é um pouco mais complexa e leva em conta as volatilidades dos ativos individuais e suas correlações. A fórmula geral é dada por:

σp = √(w1^2σ1^2 + w2^2σ2^2 + 2w1w2σ1σ2ρ12 + ... + 2w1wnσ1σnρ1n + ... + w2n^2σn^2)

Onde σp é a volatilidade do portfolio, σi é a volatilidade do ativo i, wi é o peso do ativo i no portfolio e ρij é a correlação entre os retornos dos ativos i e j.

Vale destacar a volatilidade permite avaliar o quão arriscado um ativo é ao longo do tempo, portanto, a criação de métricas para a sua avaliação é extremamente importante para aqueles que desejam realizar a gestão do risco de uma carteira.

Para facilitar todo o trabalho de verificar essas métricas, é possível criar um Dashboard, que automatiza todo o processo de coleta, tratamento, criação das métricas e a visualização de dado. No Dashboard abaixo, o processo de coleta de dados financeiros foi feito por meio da biblioteca yfinance. O Dashboard é construído no ambiente da biblioteca Shiny e os gráficos construídos por meio do Plotly.

Para obter o código do Dashboard abaixo, faça parte do Clube AM, o repositório de códigos da Análise Macro, contendo exercícios semanais de R e Python.

Veja que no Dashboard é possível inserir o ativo que se deseja, o peso relativo no Portfólio do ativo, a data inicial da amostra, e o tamanho da janela da amostra.

_____________________

Quer saber mais?

Veja nossa trilha de cursos de Finanças Quantitativas

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Criando operações SQL com IA Generativa no R com querychat

No universo da análise de dados, a velocidade para obter respostas é um diferencial competitivo. Frequentemente, uma simples pergunta de negócio — “Qual foi nosso produto mais vendido no último trimestre na região Nordeste?” — inicia um processo que envolve abrir o RStudio, escrever código dplyr ou SQL, executar e, finalmente, obter a resposta. E se pudéssemos simplesmente perguntar isso aos nossos dados em português, diretamente no nosso dashboard Shiny?

Dashboard Financeiro com IA e Shiny Python: Análise de Dados Abertos da CVM

Este artigo apresenta um tutorial completo sobre como construir uma ferramenta de análise financeira de ponta. Utilizando Shiny for Python, demonstramos a automação da coleta de dados das Demonstrações Financeiras Padronizadas (DFP) da CVM e o tratamento dessas informações com Pandas. O ponto alto do projeto é a integração da IA Generativa do Google Gemini, que atua como um assistente de análise, interpretando os dados filtrados pelo usuário e fornecendo insights contábeis e financeiros em tempo real. O resultado é um dashboard dinâmico que democratiza a análise de dados complexos e acelera a tomada de decisão.

Econometria, ML ou IA para previsão da PMS?

Prever a Pesquisa Mensal de Serviços (PMS/IBGE) é um desafio por natureza: trata-se de uma série mensal, sujeita a volatilidade e choques que vão de fatores sazonais a mudanças estruturais no setor. Para enfrentar esse problema, realizamos um exercício de comparação entre três abordagens de modelagem: econometria tradicional (ARIMA), machine learning (XGBoost) e inteligência artificial (TimeGPT).

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.