Construindo um Dashboard de Portfólio de Investimentos no Python

A combinação de diferentes ativos financeiros pode trazer benefícios, entre eles, conseguir uma boa diversificação de forma diluir os diversos riscos existentes e obter uma maior retorno possível.  É possível criar uma aplicação que captura os dados de ações e constrói um portfólio de investimento usando o Python.

Um portfólio de ações consiste no conjunto de diferentes ativos escolhidos, através de uma metodologia, e mantidas durante um período de tempo. Ao realizar a escolha de ativos, é necessário que haja formas de avaliar o quão bem essas escolhas combinadas performaram, e qual o risco empregado por estes ativos.

Retornos do portfolio

Uma ação possui uma variação entre dois períodos históricos diferentes, podemos computar essa variação da seguinte forma:

     $$r_i = \frac{P_t - P_{t-1}}{P_{t-1}}$$

Portanto, podemos saber o quanto essa ação rendeu de um período para outro. Mas, e para o caso de haver mais de uma ação em nossa carteira? Como podemos calcular? Para isso, devemos levar em consideração o peso de cada ação no total investido na carteira, obtendo a seguinte equação:

     $$ r_p = w_1 * r_1 + w_2 * r_2 ... w_i * r_i $$

Em que  $w_i$ é o peso do ativo no portfólio, podendo ser calculado como:

    $$w = \frac{valor\;do\;ativo}{total\;investido\;no\;portfolio}$$

Ou seja, ponderamos o retorno do ativos com o seus pesos dentro da carteira.

A partir da constituição dos retornos, conseguimos obtê-lo em diferentes formas, possibilitando a avaliação do portfólio em diferentes formas.

  • Retornos diário/mensal
  • Retornos Acumulados
  • Retornos Anualizados

Dashboard de Portfólio de Investimentos no Python

É possível automatizar todo o processo de coleta e visualização de dados construindo um Dashboard no Python. O processo de coleta é feito por meio da biblioteca yfinance. O Dashboard é construído no ambiente da biblioteca Dash e os gráficos construídos por meio do Plotly.

Para obter o código do Dashboard abaixo, faça parte do Clube AM, o repositório de códigos da Análise Macro, contendo exercícios semanais de R e Python.

_____________________

Quer saber mais?

Veja nossa trilha de cursos de Finanças Quantitativas

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Análise de Criptomoedas com Python

Aprenda a estruturar um pipeline de dados financeiros com Python. Ensinamos a construção de um dashboard automatizado para coleta, tratamento e visualização de criptomoedas via API.

Como Construir um Monitor de Política Monetária Automatizado com Python?

Descubra como transformar dados do Banco Central em inteligência de mercado com um Monitor de Política Monetária Automatizado. Neste artigo, exploramos o desenvolvimento de uma solução híbrida (Python + R) que integra análise de sentimento das atas do COPOM, cálculo da Regra de Taylor e monitoramento da taxa Selic. Aprenda a estruturar pipelines ETL eficientes e a visualizar insights econômicos em tempo real através de um dashboard interativo criado com Shiny, elevando o nível das suas decisões de investimento.

Qual o efeito de um choque de juros sobre a inadimplência?

Neste exercício, exploramos a relação dinâmica entre o custo do crédito (juros na ponta) e o risco realizado (taxa de inadimplência) através de uma análise exploratória de dados e modelagem econométrica utilizando a linguagem de programação R.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.