Construindo um Dashboard de Portfólio de Investimentos no Python

A combinação de diferentes ativos financeiros pode trazer benefícios, entre eles, conseguir uma boa diversificação de forma diluir os diversos riscos existentes e obter uma maior retorno possível.  É possível criar uma aplicação que captura os dados de ações e constrói um portfólio de investimento usando o Python.

Um portfólio de ações consiste no conjunto de diferentes ativos escolhidos, através de uma metodologia, e mantidas durante um período de tempo. Ao realizar a escolha de ativos, é necessário que haja formas de avaliar o quão bem essas escolhas combinadas performaram, e qual o risco empregado por estes ativos.

Retornos do portfolio

Uma ação possui uma variação entre dois períodos históricos diferentes, podemos computar essa variação da seguinte forma:

     $$r_i = \frac{P_t - P_{t-1}}{P_{t-1}}$$

Portanto, podemos saber o quanto essa ação rendeu de um período para outro. Mas, e para o caso de haver mais de uma ação em nossa carteira? Como podemos calcular? Para isso, devemos levar em consideração o peso de cada ação no total investido na carteira, obtendo a seguinte equação:

     $$ r_p = w_1 * r_1 + w_2 * r_2 ... w_i * r_i $$

Em que  $w_i$ é o peso do ativo no portfólio, podendo ser calculado como:

    $$w = \frac{valor\;do\;ativo}{total\;investido\;no\;portfolio}$$

Ou seja, ponderamos o retorno do ativos com o seus pesos dentro da carteira.

A partir da constituição dos retornos, conseguimos obtê-lo em diferentes formas, possibilitando a avaliação do portfólio em diferentes formas.

  • Retornos diário/mensal
  • Retornos Acumulados
  • Retornos Anualizados

Dashboard de Portfólio de Investimentos no Python

É possível automatizar todo o processo de coleta e visualização de dados construindo um Dashboard no Python. O processo de coleta é feito por meio da biblioteca yfinance. O Dashboard é construído no ambiente da biblioteca Dash e os gráficos construídos por meio do Plotly.

Para obter o código do Dashboard abaixo, faça parte do Clube AM, o repositório de códigos da Análise Macro, contendo exercícios semanais de R e Python.

_____________________

Quer saber mais?

Veja nossa trilha de cursos de Finanças Quantitativas

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Regimes da Política Monetária Brasileira com Markov Switching no Python

Este exercício analisa a política monetária brasileira utilizando modelos de Markov Switching Regression. O objetivo é identificar diferentes regimes de política monetária e como eles influenciam a taxa Selic, a meta de inflação e o hiato do produto. Usamos a linguagem de programação Python para o processo de coleta, tratamento, análise e modelagem dos dados.

Como criar janelas móveis de séries temporais usando o Python

Janelas Móveis/Deslizantes, ou Rolling Windows, são termos frequentes na análise de séries temporais. Mas o que são e como aplicá-las no Python? Neste tutorial, mostramos como essa ferramenta é essencial para a análise de dados utilizando como exemplo a correlação móvel de ações brasileiras.

Como incorporar choques em cenários de previsão?

Neste exercício mostramos como incorar choques no cenário de variáveis exógenas para fins de previsão. Usando como exemplo a previsão do IPCA, através de um modelo de machine learning, mostramos os cuidados a serem tomados e uma forma simples de definir o cenário com os choques. Ao final, apresentamos uma previsão com um suposto choque e uma previsão sem o choque para comparação.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.