Criando um Dashboard de Análise de Dados de Demonstrativos Financeiros no Python

Resumo

Este projeto demonstra como criar um dashboard para análise de dados das demonstrações financeiras de empresas brasileiras, utilizando dados disponibilizados pela CVM. Desenvolvemos o dashboard com Python e Shiny, permitindo a coleta, tratamento e análise dos dados diretamente na interface.

Como automatizar uma análise?

Com uma linguagem de programação, é possível desenvolver métodos que automatizam processos, facilitando sua implementação em sistemas como dashboards.

Estrutura do Dashboard

O desenvolvimento do dashboard será feito em etapas:

  1. Compreensão e uso das fontes de dados;
  2. Criação de um código para coleta de dados;
  3. Análise e visualização de dados por meio de gráficos;
  4. Implementação do código em um ambiente de dashboard;
  5. Automatização da coleta e análise com o GitHub Actions.

O que iremos analisar?

Antes de começar o código, vamos entender melhor o escopo do que será construído. A partir dessa compreensão, utilizaremos um exemplo inicial como protótipo do dashboard.

Indicadores contábeis

Indicadores extraídos das demonstrações financeiras auxiliam decisões de investimento e representam uma base importante na análise fundamentalista. Com esses indicadores, é possível comparar empresas do mesmo setor e avaliar se uma ação está "descontada" (ou seja, com preço de mercado abaixo de seu valor intrínseco), gerando oportunidades de investimento.

A análise regular desses indicadores é essencial para investidores, mas muitos encontram dificuldade não apenas em acessar esses dados, como também em automatizar o processo de coleta e análise.

Com o código disponível, vamos mostrar como importar automaticamente os demonstrativos das empresas listadas na B3 e realizar uma análise inicial dos indicadores.

Demonstrações Financeiras Padronizadas

Antes de buscar os dados, é importante compreender a fonte. As empresas listadas na B3 enviam à CVM suas Demonstrações Financeiras Padronizadas, de acordo com as instruções contábeis da CVM.

Entre os demonstrativos obrigatórios na DFP, temos:

  • Balanço Patrimonial Ativo (BPA)
  • Balanço Patrimonial Passivo (BPP)
  • Demonstração de Fluxo de Caixa - Método Direto (DFC-MD)
  • Demonstração de Fluxo de Caixa - Método Indireto (DFC-MI)
  • Demonstração das Mutações do Patrimônio Líquido (DMPL)
  • Demonstração de Resultado Abrangente (DRA)
  • Demonstração de Resultado (DRE)
  • Demonstração de Valor Adicionado (DVA)

Dados da CVM

As informações sobre as DFPs podem ser acessadas no Portal de Dados da CVM, com histórico disponível desde 2011:

Portal de dados da CVM - DFP

Para baixar o histórico, clique em “Histórico desde 2010,” que leva a uma página com os arquivos anuais em formato zip. Esses arquivos são extensos e contêm diversos subarquivos, o que pode dificultar o trabalho.

Exemplo do Dashboard

Abaixo, apresentamos uma imagem do dashboard criado com Python e Shiny.

Tenha acesso ao código e suporte desse e de mais 500 exercícios no Clube AM!

Quer o código desse e de mais de 500 exercícios de análise de dados com ideias validadas por nossos especialistas em problemas reais de análise de dados do seu dia a dia? Além de acesso a vídeos, materiais extras e todo o suporte necessário para você reproduzir esses exercícios? Então, conheça o Clube AM clicando aqui.

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Regimes da Política Monetária Brasileira com Markov Switching no Python

Este exercício analisa a política monetária brasileira utilizando modelos de Markov Switching Regression. O objetivo é identificar diferentes regimes de política monetária e como eles influenciam a taxa Selic, a meta de inflação e o hiato do produto. Usamos a linguagem de programação Python para o processo de coleta, tratamento, análise e modelagem dos dados.

Como criar janelas móveis de séries temporais usando o Python

Janelas Móveis/Deslizantes, ou Rolling Windows, são termos frequentes na análise de séries temporais. Mas o que são e como aplicá-las no Python? Neste tutorial, mostramos como essa ferramenta é essencial para a análise de dados utilizando como exemplo a correlação móvel de ações brasileiras.

Como incorporar choques em cenários de previsão?

Neste exercício mostramos como incorar choques no cenário de variáveis exógenas para fins de previsão. Usando como exemplo a previsão do IPCA, através de um modelo de machine learning, mostramos os cuidados a serem tomados e uma forma simples de definir o cenário com os choques. Ao final, apresentamos uma previsão com um suposto choque e uma previsão sem o choque para comparação.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.