Criando um Dashboard de Análise de Sentimento de Demonstrativos de Empresas no Python

A inteligência artificial generativa (IA Generativa) permite criar soluções que automatizam grande parte dos processos manuais de diversas profissões. Na economia, finanças e análise de dados não é diferente. Desde a coleta de dados, passando pela análise e apresentação, podemos usar IA Generativa para economizar tempo e ganhar produtividade.

Neste artigo, mostramos como criar um AI Assistant, que é um “funcionário-robô” encarregado de ler e analisar os resultados financeiros de empresas brasileiras. A ideia é automatizar o processo de coleta, tratamento, análise e apresentação de dados que comumente agentes do mercado financeiro fazem com as diferentes empresas do mercado a cada trimestre. O assistente realiza estes procedimentos automaticamente e fornece uma análise completa sobre o comunicado da

Este AI Assistant trabalha dentro de uma dashboard Shiny, para facilitar a experiência e acesso do usuário final. A seguir mostramos o passo a passo do desenvolvimento.

Passo 01: bibliotecas

Iniciamos definindo as bibliotecas utilizadas no projeto:

  • requests para baixar o pdf do site da empresa de interesse
  • shiny e shinywidgets para desenvolver a dashboard
  • google.generativeai para analisar o resultado da empresa
  • plotly para visualizar dados

Passo 02: modelo LLM

Em seguida, definimos o modelo de IA generativa a ser utilizado para a análise do relatório. Neste caso, utilizamos um modelo popular e acessível, o Gemini.

Obs: é necessário apontar uma chave de API para uso do modelo.

Passo 03: interface da dashboard

Agora avançamos para a interface visual da dashboard, definindo um campo de input para o usuário colocar o link do comunicado do resultado da empresa que se deseja analisar e os outputs para as análises geradas pelo modelo de IA generativa.

Passo 04: coleta de dados e prompt

Por fim, definimos uma função reativa que processa o link informado pelo usuário, coleta o pdf diretamente do site da empresa, cria um prompt otimizado para o modelo de IA generativa, envia os dados para a API do Google e recebe a resposta.

O resultado final é a dashboard exposta na imagem acima. Como próximos passos, o app pode ser publicado (deploy) em algum serviço, como o Shinyapps.io.

Tenha acesso ao código e suporte desse e de mais 500 exercícios no Clube AM!

Quer o código desse e de mais de 500 exercícios de análise de dados com ideias validadas por nossos especialistas em problemas reais de análise de dados do seu dia a dia? Além de acesso a vídeos, materiais extras e todo o suporte necessário para você reproduzir esses exercícios? Então, fale com a gente no Whatsapp e veja como fazer parte do Clube AM, clicando aqui.

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Como se comportou o endividamento e a inadimplência nos últimos anos? Uma análise utilizando a linguagem R

Neste exercício realizamos uma análise sobre a inadimplência dos brasileiros no período recente, utilizando a linguagem R para examinar dados públicos do Banco Central e do IBGE. Investigamos a evolução do endividamento, da inadimplência e das concessões de crédito, contextualizando-os com as dinâmicas da política monetária (Taxa Selic) e do mercado de trabalho (renda e desemprego).

Qual o hiato do produto no Brasil?

Entender o hiato do produto é fundamental para avaliar o ritmo da economia e as pressões inflacionárias no Brasil. Neste artigo, mostramos como estimar essa variável não observável a partir dos dados do PIB, explorando diferentes metodologias — de regressões simples a modelos estruturais — e discutindo as limitações e incertezas que cercam cada abordagem.

Determinantes do Preço do Ouro: VAR + Linguagem R

Este artigo realiza uma análise econométrica para investigar os determinantes dinâmicos do preço do ouro. Utilizando um modelo Vetorial Autorregressivo (VAR) em R, examinamos o impacto de variáveis como o dólar (DXY), a curva de juros e a incerteza global. Os resultados mostram que um fortalecimento inesperado do dólar tem um efeito negativo e significativo no curto prazo sobre os retornos do ouro, embora a maior parte de sua variância seja explicada por fatores intrínsecos ao seu próprio mercado.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.