Criando uma função de correlação móvel entre ativos financeiros

No post de hoje, iremos mostrar como é possível calcular a correlação móvel entre ativos financeiros. O objetivo do calculo é acompanhar a relação entre os ativos ao longo do tempo, de forma que, para quem possua uma carteira de ativos saiba quais deles eventualmente se tornem negativamente correlacionado, e portanto, tenham uma carteira diversificada e com baixo risco.

Para quem não sabe, a correlação mede a associação linear entre duas variáveis, ou seja, se há uma correlação positiva entre dois ativos, então ambos, eventualmente se direcionam para a mesma direção, e vice-versa. Importante lembrar que isto não significa qualquer ideia de causalidade.

Para uma carteira de investimentos, estamos obviamente interessados em ativos que se correlacionam negativamente, afim de diminuir o risco da carteira.

Carregamos os pacotes essenciais.

library(Quandl)
library(quantmod)
library(tidyverse)
library(timetk)
library(tidyquant)

Para nosso código, primeiro, devemos buscar os preços dos nossos ativos. Neste post, buscamos 3 ações, o dólar e também a ibovespa.

# Define os tickers das ações coletadas

tickers = c('PETR4.SA', 'ABEV3.SA', 'BBDC4.SA')

# Define o período da coleta

start = '2016-01-01'

# Coleta os preços das ações

prices = getSymbols(tickers, src='yahoo',
                    from= start,
                    warning=FALSE) %>%
  map(~Ad(get(.))) %>%
  reduce(merge) %>%
  `colnames<-` (tickers)

# Transforma os preços diários em mensais, e os transforma em tibble

prices_monthly <- prices %>% 
  to.monthly(indexAt = "lastof",
             OHLC = FALSE) %>% 
  tk_tbl(preserve_index = TRUE,
         rename_index = "date")


# Coleta os dados do IBOVESPA

ibov <- getSymbols("^BVSP", src = "yahoo",
                   from = start,
                   warning = FALSE,
                   auto.assign = FALSE) %>% 
  Ad()


# Transforma o IBOV diário em mensal, e o transforma em tibble

ibov_monthly <- ibov %>% 
  to.monthly(indexAt = "lastof",
             OHLC = FALSE) %>% 
  tk_tbl(preserve_index = TRUE,
         rename_index = "date")


# Coleta o preço do Dólar e o transforma em tibble

cambio = Quandl('BCB/3697',
                order='asc', 
                start_date = start) %>% 
  as.tibble()
  


# Junta todos os preços em um tibble

all_prices <- ibov_monthly %>% 
  inner_join(cambio, by = c("date" = "Date")) %>% 
  inner_join(prices_monthly) %>% 
  rename(cambio = "Value",
         ibov = "BVSP.Adjusted") 

Após realizar toda a coleta e tratamento dos dados, iremos calcular os retornos desses ativos.

# Calcula o retorno contínuo

returns_long <- all_prices %>% 
  pivot_longer(names_to = "asset",
               values_to = "prices",
               -date) %>% 
  group_by(asset) %>% 
  tq_transmute(mutate_fun = periodReturn,
               type = "log")

Por fim, criamos a nossa função de correlação móvel, utilizando a função slidify do pacote {timetk}. Em seguida, calculamos a correlação dos ativos em relação ao Ibovespa e visualizamos no gráfico o resultado.

# Cria uma função de correlação móvel

rolling_cor <- slidify(~cor(.x, .y, use = "complete.obs"), .period = 6, .align = "right")


# Transforma em formato wide

returns_wide <- returns_long %>% 
  pivot_wider(names_from = "asset",
                       values_from = "monthly.returns") 


# Calcula a correlação móvel de cada ativo em relação ao Ibovespa

corr_ibov <- returns_wide %>% 
  transmute(date  = date,
    Dólar = rolling_cor(ibov, cambio),
         PETR4 = rolling_cor(ibov, PETR4.SA),
         ABEV3 = rolling_cor(ibov, ABEV3.SA),
         BBDC4 = rolling_cor(ibov, BBDC4.SA))


# Plota

corr_ibov %>% 
  drop_na() %>% 
  pivot_longer(-date) %>% 
ggplot(aes(x = date, y = value, color = name))+
  geom_line(size = 1)+
  theme_minimal()+
  labs(x = "",
       y = "Correlação",
       title = " Correlação móvel com o IBOVESPA Mensal",
       cation = "Dados: Yahoo Finance e Banco Central do Brasil | Elaboração: analisemacro.com.br",
       color = "Ativo")

________________________

(*) Quer saber mais sobre Mercado Financeiro? Confira nossos curso de Finanças Quantitativas.

________________________

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Como tratar dados no Python? Parte 5: renomeando colunas

Como dar novos nomes significativos para as colunas em uma tabela de dados usando Python? Neste tutorial mostramos os métodos de renomeação de colunas disponíveis na biblioteca pandas, que tem como vantagem sua sintaxe simples e prática.

Como tratar dados no Python? Parte 4: operações por grupos

Como mensalizar dados diários? Ou como filtrar os valores máximos para diversas categorias em uma tabela de dados usando Python? Estas perguntas são respondidas com os métodos de operações por grupos. Neste tutorial mostramos estes métodos disponíveis na biblioteca pandas, que tem como vantagem sua sintaxe simples e prática.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.