Estimando a Volatilidade do Câmbio no Python

No post de hoje investigamos a volatilidade do câmbio utilizando um Garch(1,1).

Uma importante medida em finanças é o risco associado a um ativo e a volatilidade de ativos é talvez a medida de risco mais utilizada. Ainda que a volatilidade seja bem definida, ela não é diretamente observada na prática. Nós observamos os preços dos ativos e seus derivativos. A volatilidade deve ser, então, estimada com base nesses preços observados.

Existem uma série de formas de estimar a volatilidade, desde a mais simples, usando o desvio padrão, até mais robustos tal como Garch.

O interessante de modelos do tipo Garch é que permitem modelar a volatilidade com base nos retornos ao quadrado passados da série e também da volatilidade passada, o que permite que efeitos práticos possam ser incluídos no modelo.

Para entender como foi criado o gráfico e o modelo abaixo, faça parte do Clube AM, o repositório de códigos da Análise Macro, contendo exercícios semanais de R e Python.

Vejamos abaixo a série da Taxa de Câmbio R$/U$ no gráfico abaixo.

 

Podemos transformar a série do preço do câmbio em log retornos, o que permitirá modelarmos a série usando um Garch(1,1).

Abaixo temos o resultado do Garch(1,1) nos log retornos do câmbio. No primeiro gráfico, da esquerda, tem-se a volatilidade estimada, enquanto no segundo gráfico a direta tem-se os erros padronizados do modelo, permitindo avaliar o resultado.

Abaixo a tabela demonstrando os resultado modelo

_____________________________________

Quer aprender mais?

Seja um aluno da nossa trilha de Macroeconomia Aplicada e aprenda a criar projetos voltados para a Macroeconomia

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Como avaliar modelos de IA na previsão macroeconômica?

Descubra como economistas e cientistas de dados estão combinando econometria e inteligência artificial para aprimorar previsões macroeconômicas. Neste post, você vai entender as principais etapas de avaliação de modelos — da preparação dos dados à validação cruzada — e conhecer as métricas e técnicas que revelam quais métodos realmente entregam as melhores previsões. Uma leitura essencial para quem quer compreender o futuro da análise econômica orientada por dados.

Análise exploratória e seleção de séries temporais econômicas para modelagem

Quer entender como transformar dados econômicos brutos em previsões macroeconômicas precisas? Neste post, mostramos passo a passo como realizar a análise exploratória e seleção de séries temporais com Python — desde o tratamento de dados e remoção de multicolinearidade até a escolha das variáveis mais relevantes usando técnicas de machine learning e econometria. Um guia essencial para quem quer unir teoria econômica e inteligência artificial na prática da previsão macroeconômica.

Transformers para Análise de Séries Temporais

Neste tutorial, mostramos passo a passo como aplicar dados de séries temporais em modelos baseados na arquitetura Transformer, utilizando a biblioteca Darts no Python. Você aprenderá como transformar dados temporais em um formato compatível, ajustar o modelo e gerar previsões. Uma introdução prática e didática à união entre Deep Learning e análise de séries temporais.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.