Filtro de Kalman e Beta de Mercado

O Filtro de Kalman é onipresente em problemas de controle de engenharia, incluindo orientação e navegação, análise de trajetória de naves espaciais e fabricação, entretanto, também é amplamente utilizado em finanças quantitativas. Neste post de hoje, trataremos de introduzir o Filtro de Kalman de forma intuitiva aplicando um exemplo de estimação do Beta de Mercado utilizando o algoritmo no Python.

O filtro de Kalman é um algoritmo que usa observações com ruídos de um sistema ao longo do tempo para estimar os parâmetros do sistema (alguns dos quais não são observáveis) e prever observações futuras. A cada passo de tempo, ele faz uma previsão, recebe uma medição e se atualiza com base na comparação entre a previsão e a medição. Esse algoritmo faz parte de um sistema de espaço de estados.

A premissa geral de um modelo de espaço de estados é que temos um conjunto de estados que evoluem no tempo (como a razão de hedge entre dois pares cointegrados de ações), mas nossas observações desses estados contêm ruído estatístico (como ruído de microestrutura de mercado) , e, portanto, não podemos observar diretamente os estados "verdadeiros".

O objetivo do modelo de espaço de estados é inferir informações sobre os estados, dadas as observações, à medida que novas informações chegam. Ou seja, utiliza-se de um algoritmo recursivo que permite usar uma série temporal observável para estimar uma série não observável, chamada de variável de estado, sendo construído na forma de estado-espaço.

Na imagem, temos de forma ilustrada o processo do algoritmo de Kalman.

Produzido por Fernando da Silva

Usualmente, existem três tipos de inferência que nós estamos interessado quando considerado modelos de espaço estado:

  • Previsão - Prevê os valores valores subsequentes do estado
  • Filtragem - Estimação dos valores atuais do estado através das observações passadas e atuais do estado
  • Suavização - Estimação dos valores passados ​​do estado de acordo com as observações

Não iremos discutir os aspectos matemáticos do algoritmo, visto que é complexo e exige a demonstração de diversas equações. Seguiremos apenas na parte intuitiva, e que será suficiente para entender a estimação do Beta a partir do Filtro de Kalman.

O interessante do Filtro de Kalman é a sua possibilidade de ser utilizado para estimar valores através de uma regressão. Como o Filtro de Kalman é recursivo, ou seja, é baseado na repetição e atualização dos valores para estimar uma variação desconhecida, podemos utilizá-lo para estimar o Beta de Mercado móvel de uma ação, visto que o Beta varia ao longo do tempo.

Visto que o valores de Beta variam ao longo de tempo, é normal utilizar-se de regressões móveis, como forma de obter o valor do Beta de uma ação no período mais recente. Por definição, neste processo, o usuário deve escolher o período da janela do cálculo. Pelo Filtro de Kalman, isso não é necessário, visto que utiliza-se da última observação apenas para estimar o valores desconhecidos no estado atual, e o próprio algoritmo atualiza as mudanças estruturais dos dados ao longo do tempo. Isso é extremamente útil para alguns tipos de estratégias de trading que necessitam dos melhores valores mais recentes.

Agora, seguiremos para a demonstração com um código de construção do Beta através da biblioteca pykalman.

Utilizaremos o pandas_datareader para a importação dos preços e o pandas e numpy para cálculo dos retornos da ação e do retorno de mercado com  a finalidade de calcular o beta pelo Filtro da Kalman.

No código abaixo tratamos de importar os dados da ITUB4 e calcular os seus retornos diários no período de 2019 a 07/2022. Realizamos o mesmo processo para o Ibovespa.

Por fim, devemos definir como iremos calcular o Filtro de Kalman utilizando a classe KalmanFilter, definindo os valores do parâmetros iniciais do algoritmo. Para entender mais sobre como são definidos os argumento da função, veja a documentação da biblioteca.

Por fim, procedemos com o cálculo dos valores, com o método filter(). O resultado será o estado dos valores do coeficiente da regressão e seu intercepto, bem com o estado das covariâncias.

Abaixo, podemos visualizar o Beta estimado ao longo do tempo.

Interessante notar as mudanças ao longo do tempo do coeficiente, corroborando para a utilização em estratégias que necessitam de valores dinâmicos do Beta.

__________________________________________________

Quer saber mais?

Veja nosso curso de Python para Investimentos.

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Como tratar dados no Python? Parte 5: renomeando colunas

Como dar novos nomes significativos para as colunas em uma tabela de dados usando Python? Neste tutorial mostramos os métodos de renomeação de colunas disponíveis na biblioteca pandas, que tem como vantagem sua sintaxe simples e prática.

Como tratar dados no Python? Parte 4: operações por grupos

Como mensalizar dados diários? Ou como filtrar os valores máximos para diversas categorias em uma tabela de dados usando Python? Estas perguntas são respondidas com os métodos de operações por grupos. Neste tutorial mostramos estes métodos disponíveis na biblioteca pandas, que tem como vantagem sua sintaxe simples e prática.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.