Modelo de Mercado e Regressão Móvel

No post de hoje iremos mostrar como criar o modelo de precificação conhecido como Market Model. O propósito do modelo segue o mesmo caminho que outros modelos de fatores, em que é escolhido uma proxy de risco para explicar a variação do retorno de um ativo. Mostraremos também como criar uma regressão móvel para o modelo.

No caso do Market Model, pode ser considerado um dos modelos mais simples dentro da literatura e do mundo real de finanças, em que é necessário somente os dados de um índice de mercado que queira ser acompanhado, diferente de outros modelos, que se estendem na utilização de proxys para portfolios de mercado ou o efeito do tamanho das empresas sobre o ativo, podendo ou não serem modelos multi-fatores.

O Market Model não pressupõe a preocupação de se utilizar o verdadeiro portfolio de mercado, apenas um índice, portanto não é necessário que seja utilizado a taxa de juros livre de risco para realizar seu cálculo. Sua equação é definida como:

(1)    \begin{equation*}R_i = \alpha + \beta r_m\end{equation*}

em que $r_i$ é o retorno do ativo, $\alpha$ é o retorno em excesso, $\beta$ é o coeficiente que mede a sensibilidade do ativo em relação ao índice e $r_m$ é o retorno do índice.

Feito a especificação do nosso modelo, podemos coletar e tratar nossos dados. Iremos coletar os preços de quatro ações para montar um Equally Weighted Portfolio. Como estamos utilizando ações que estão na B3, iremos utilizar o Índice Bovespa como índice de mercado. Iremos utilizar dados mensais (realizando a transformação de diário para mensal) começando a partir de 2013.

library(tidyverse)
library(tidyquant)
library(timetk)
library(stargazer)
library(ggrepel)
library(patchwork)

# Define os ativos que irão ser coletados

tickers <- c("PETR4.SA", "ITUB4.SA", "ABEV3.SA", "JBSS3.SA")

# Define a data de início da coleta

start <- "2012-12-01"

# Realiza a coleta dos preços diários

prices <- getSymbols(tickers,
auto.assign = TRUE,
warnings = FALSE,
from = start,
src = "yahoo") %>%
map(~Cl(get(.))) %>%
reduce(merge) %>%
`colnames<-`(tickers)

# Transfroma os preços diários em mensais

prices_monthly <- to.monthly(prices,
indexAt = "lastof",
OHLC = FALSE)

# Calcula os retornos mensais

asset_returns <- Return.calculate(prices_monthly,
method = "log") %>%
na.omit()

# Calcula o portfolio com pesos iguais

portfolio_returns <- Return.portfolio(asset_returns)

# Coleta os dados do ibovespa

getSymbols("^BVSP",
warnings = FALSE,
from = start,
src = "yahoo")

# Calcula os retornos mensais

bvsp_returns <- Ad(BVSP) %>%
to.monthly(indexAt = "lastof",
OHLC = FALSE) %>%
Return.calculate(method = "log") %>%
na.omit() %>%
`colnames<-`("ibovespa")

# Junta os dados

all_returns <- merge.xts(portfolio_returns, bvsp_returns)

Com os nossos dados em mãos, podemos realizar nossa Regressão via MQO.


# Cálcula a regressão "estática"

market_model <- lm(formula = portfolio.returns ~ ibovespa,
data = all_returns)

# Cria uma tabela com os resultados da regressão

stargazer(market_model, header = FALSE, align = TRUE)

 


Vemos que tivemos um resultado no qual nosso Beta é menor do 1, significando que nosso portfólio varia menos que o proporcional do mercado.

Por fim, sabemos que esse resultado não pode ser o  mesmo em todos os horizontes de tempo, para tanto, podemos criar uma Regressão Móvel para saber em quais período de tempo nosso Beta está acima ou abaixo que o proporcional do mercado.


# Aplica a função para criar a regressão móvel

coef <- rollapply(all_returns,
width = 24, # Janela
FUN = function(x) # Cria uma função da regressão para utilizar com a função
{
roll_reg = lm(portfolio.returns ~ ibovespa,
data = as.data.frame(x))
return(roll_reg$coef)
},
by.column = FALSE)

# Limpa e transforma o objeto em tibble

coef_tbl <- coef %>%
na.omit() %>%
tk_tbl(preserve_index = TRUE,
rename_index = "date") %>%
rename(alpha = "X.Intercept.", beta = "ibovespa")

&nbsp;

# Cria um gráfico do Alpha móvel

alpha <- ggplot(coef_tbl, aes(x = date, y = alpha))+
geom_line(size = .8, colour = "darkblue")+
theme_minimal()+
labs(title = "Alpha",
x = "",
y = "")+
geom_hline(yintercept = 0, linetype = "dashed", colour = "red")+
geom_label_repel(label = round(tail(coef_tbl$alpha, 1), 4),
nudge_y = 0.002,
nudge_x = -1,
data = tail(coef_tbl, 1),
color = 'black',
fill = 'lightblue')

# Cria um gráfico do Beta móvel

beta <- ggplot(coef_tbl, aes(x = date, y = beta))+
geom_line(size = .8, colour = "darkblue")+
theme_minimal()+
labs(title = "Beta",
x = "",
y = "")+
geom_label_repel(label = round(tail(coef_tbl$beta, 1), 3),
nudge_y = 0.2,
nudge_x = -1,
data = tail(coef_tbl, 1),
color = 'black',
fill = 'lightblue')

&nbsp;

# Junta os gráficos

alpha / beta +
plot_annotation(title = "Regressão Móvel do Modelo de Mercado",
subtitle = "Portfólio x Ibovespa",
caption = "Elaborado por analisemacro.com.br com dados do Yahoo Finance.")

 

________________________

(*) Para entender mais sobre Mercado Financeiro e medidas de risco, confira nosso curso de R para o Mercado Financeiro.
________________________

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Analisando o sentimento da política monetária com IA usando Python

Análise de sentimentos é uma técnica de Processamento de Linguagem Natural (PLN) que serve para revelar o sentimento contido em um texto. Neste exercício, aplicamos esta técnica para analisar as atas das reuniões do COPOM, revelando o que os diretores de política monetária discutem nas entrelinhas. Utilizando um modelo de Inteligência Artificial através do Python, produzimos ao final um índice de 0 a 100 para sintetizar a análise histórica.

Como a IA pode auxiliar na otimização de Portfólio de Investimentos?

A construção de portfólio ótimo refere-se ao processo de alocar eficientemente capital entre um conjunto predefinido de ativos ou títulos. O campo da construção de portfólio tem sido extensivamente estudado por acadêmicos e profissionais desde a década de 1950, quando Markowitz introduziu sua inovadora abordagem de média-variância para a construção de portfólio. Diante disso, podemos melhorar o processo de alocação de peso de um investimento em um portfólio através do Aprendizado não supervisionado com a aplicação do Hierarchical Risk Parity (HRP). Neste exercício, realizamos uma introdução ao método e mostramos os resultados de um exemplo criado através do Python.

Prevendo múltiplas séries usando IA no Python

Como podemos realizar previsões para várias séries temporais simultaneamente? Para abordar essa questão, empregamos a biblioteca MLForecastdo Python. Esta biblioteca disponibiliza uma variedade de modelos e funcionalidades para realizar previsões em séries temporais utilizando técnicas de aprendizado de máquina. Demonstramos sua aplicação ao prever as curvas de energia horária em quatro regiões distintas do Brasil.

Esse exercício é uma continuação do exercício “Usando IA para prever o consumo de energia no Brasil com Python”.

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.