Modelo Multifatores Macroeconômicos

No post de hoje iremos vasculhar os fatores que representam mudanças inesperadas em variáveis macroeconômicas em retornos de ações. A ideia será denotar a mudança inesperada como o resíduo de variáveis macroeconômicas após a remoção de sua dependência dinâmica por meio do uso de um VAR e utilizar uma regressão linear para modelar a relação com o mercado acionário.

Variáveis macroeconômicas contém informações relevantes para a formação do preço de uma ação, entretanto, os preços de ações são comumente sensíveis a novas noticias econômicas, principalmente aquelas não esperadas.

Uma forma interessante de obter essa "informação não esperada" pode ser usando os erros de um VAR para um conjunto de variáveis macroeconômicas estabelecidas. No exercício de hoje, escolhemos: Câmbio real, Embi BR, PIB Mensal, Selic e IPCA para obter as informações não conhecidas, usando o resíduo do modelo. Com a obtenção do resíduo de cada variável, as regredimos e obtemos a relação dessas surpresas em relação aos log retornos de quatro ativos do mercado acionário brasileiro: WEGE3, CMIG4, ITSA4 e BRFS3.

Para entender como foi criado o gráfico e o modelo abaixo, faça parte do Clube AM, o repositório de códigos da Análise Macro, contendo exercícios semanais de R e Python.

No gráfico abaixo, vemos os resultados dos coeficientes estimados de cada fator de supressa macroeconômica para cada surpresa.

_____________________________________

Quer aprender mais?

Seja um aluno da nossa trilha de Macroeconomia Aplicada e aprenda a criar projetos voltados para a Macroeconomia

Referências

Chen, N. F., Roll, R., & Ross, S. A. (1986). Economic forces and the stock market. Journal of business, 383-403.

Tsay, Ruey S. Analysis of Financial Time Series 3rd Edition (2010)

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Como avaliar modelos de IA na previsão macroeconômica?

Descubra como economistas e cientistas de dados estão combinando econometria e inteligência artificial para aprimorar previsões macroeconômicas. Neste post, você vai entender as principais etapas de avaliação de modelos — da preparação dos dados à validação cruzada — e conhecer as métricas e técnicas que revelam quais métodos realmente entregam as melhores previsões. Uma leitura essencial para quem quer compreender o futuro da análise econômica orientada por dados.

Análise exploratória e seleção de séries temporais econômicas para modelagem

Quer entender como transformar dados econômicos brutos em previsões macroeconômicas precisas? Neste post, mostramos passo a passo como realizar a análise exploratória e seleção de séries temporais com Python — desde o tratamento de dados e remoção de multicolinearidade até a escolha das variáveis mais relevantes usando técnicas de machine learning e econometria. Um guia essencial para quem quer unir teoria econômica e inteligência artificial na prática da previsão macroeconômica.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.