Value At Risk no R

O Value At Risk é uma importante medida de risco no mundo das finanças, que estima a probabilidade de perda monetária em um dado horizonte de tempo. Se tornou famosa por sua simplicidade e pelo fato de estimar as perdas ao longo do tempo dado um nível de confiança. Existem diversas formas de se calcular o VaR, e no post de hoje mostraremos duas formas, a forma gaussiana (normal) e a histórica.

Há diversos métodos para se calcular o VaR, dentre aqueles relativamente mais simples, que podem ser o ponto inicial para aqueles que estão iniciando os estudos e a prática com medidas de risco, até aqueles que possuem uma maior nível de complexidade. Como diversas outras medidas de risco, o cálculo do VaR deve ser feito a partir dos retornos dos ativos, mais comumente os retornos contínuos, por conta de suas medidas estatísticas.

Historical Value at Risk

A primeira forma de calcular o VaR que elencaremos aqui pode ser através do Historical VaR, que calcula a perda monetária com base em um nível de probabilidade dado um quantil do retornos negativos passados. Esse método é útil quando se obtém um nível grande de dados passados, ou seja, por definição é uma analise ex-post da distribuição de retorno.

    $$VaR = q_p$$

Em que $q_p$ é o quantil empírico dos retornos negativos da série.

Gaussian Value At Risk

Outra forma de calcular o VaR é assumindo que os seus retornos são normais, isto é, possui um distribuição Gaussiana

    $$R \sim N(\mu, \sigma)$$

. Deste modo, é necessário estimação da média dos retornos, a variância (e consequentemente o desvio padrão) e os retornos passados da série.

    $$VaR = -\overline{R} - \sqrt{\sigma}\bullet z_c$$

onde z_c é o quantil da distribuição normal

Outros métodos de estimação de VaR levam em consideração as características das séries de retornos, bem como outro meios estimação para a volatilidade e a média.

library(quantmod)
library(PerformanceAnalytics)
library(magrittr)
library(timetk)
library(ggplot2)

Para calcular o VaR devemos ter em mãos os retornos passados dos ativos.

# Retiramos os preços

tickers <- c("PETR4.SA", "VALE3.SA", "LAME3.SA")

env <- new.env()

getSymbols(tickers,
auto.assign = TRUE,
warnings = FALSE,
src = "yahoo",
env = env)

prices_list <- lapply(env, Ad)

prices <- do.call(merge, prices_list)


# Transformamos em log retornos

returns <- Return.calculate(prices, method = "log") %>%
na.omit() %>%
`colnames<-`(tickers)

Com os retornos diários em mãos, podemos utilizar o pacote {PerformanceAnalytics} para auxiliar no cálculo do VaR. A função VaR possibilita calcular a medida em diferentes métodos (no qual utilizaremos somente o historical e gaussian) e também a um dado nível de confiança. É possível também adicionar diferentes parâmetros na função, o que deixaremos para outro momento.

# utilizamos o Portfolio Analytics para calcular o VaR

## Historical

var_historical <- VaR(R = returns, p = 0.99, method = "historical")

var_historical

## Gaussian

var_gaussian <- VaR(R = returns, p = 0.95, method = "gaussian")

var_gaussian

É possível também juntar os retornos das ações em torno de um portfólio dentro da função, possibilitando conferir a contribuição de cada ativo para o risco. Para isso, definimos de forma aleatórias os pesos de cada ação e inserimos nos argumentos da função.


# Definimos os pesos do portfólio

w <- c(0.65, 0.15, 0.20)

# Calcula o VaR com o portfolio

VaR(returns, p = 0.99, weights = w,
portfolio_method = "component")

Uma forma interessante de averiguar os resultados dos diferentes métodos com diversos níveis de confiança, pode ser visto utilizando a função chart.VaRSensitivity.

chart.VaRSensitivity(R = returns$LAME3.SA,
methods = c("GaussianVaR",
"HistoricalVaR"))

Por fim, vemos através de um gráfico de densidade dos retornos onde a possibilidade de perda.


returns_tbl <- tk_tbl(returns,
preserve_index = TRUE,
rename_index = "date")

ggplot(returns_tbl, aes(x = LAME3.SA))+
geom_density(color = "darkblue",
size = .8)+
geom_vline(xintercept = var_historical[,"LAME3.SA"],
linetype = "dotted",
color = "red",
size = 1)+
annotate(geom = "text",
x = var_historical[,"LAME3.SA"],
y = 6,
label = paste("99% Historical VaR"),
color = "red",
angle = 90,
alpha = .8,
vjust = -1.75)+
geom_vline(xintercept = var_gaussian[,"LAME3.SA"],
linetype = "dotted",
color = "black",
size = 1)+
annotate(geom = "text",
x = var_gaussian[,"LAME3.SA"],
y = 6,
label = paste("95% Gaussian VaR"),
color = "black",
angle = 90,
alpha = .8,
vjust = -1)+
theme_minimal()+
labs(title = "Densidade de retornos da LAME3",
subtitle = "99% Historical Var e 95% Gaussian VaR",
caption = "Dados: Yahoo Finance | Elaboração: analisemacro.com.br",
x = "",

y = "")

________________________

(*) Para conhecer mais sobre medidas de risco do mundo das finanças, veja nossos de Cursos de Finanças Quantitativas.

________________________

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Como Criar um Agente Analista para Dados da Inflação com LangGraph

Este post mostra como automatizar a análise da inflação brasileira com o uso de agentes inteligentes. Utilizando o LangGraph, integramos dados do IPCA, núcleos de inflação e grupos do índice para criar um sistema capaz de gerar análises econômicas automatizadas com base em consultas em linguagem natural.

Como Criar um Agente para Análise da Atividade Econômica com LangGraph

Este post mostra como automatizar a análise da atividade econômica brasileira com agentes inteligentes. Utilizando o framework LangGraph e dados do IBGE e Banco Central, construímos um sistema capaz de gerar respostas analíticas a partir de perguntas em linguagem natural, unindo automação de consultas SQL e interpretação econômica.

Introdução ao LangGraph

LangGraph é um framework em Python desenvolvido para gerenciar o fluxo de controle de aplicações que integram um modelo de linguagem (LLM). Com ele podemos construir Agentes de IA robustos e previsíveis.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.