O Relatório Focus, divulgado semanalmente pelo Banco Central, reúne as expectativas do mercado para variáveis-chave da economia brasileira, como inflação, câmbio, PIB e Selic. Neste projeto, transformamos esses dados em um dashboard interativo para acompanhar a acurácia das previsões ao longo do tempo.
A tecnologia de agentes de IA está democratizando o acesso e a manipulação de dados econômicos complexos, tornando-a acessível mesmo para aqueles sem experiência em programação. Neste post discutimos a criação de agentes de IA para coletar dados econômicos brasileiros usando linguagem natural, como “Qual é a expectativa do IPCA para 2025?”.
Unindo conhecimentos sobre Tools, LLMs e Vector Stores, agora é hora de integrar diferentes conceitos e aprender a construir um Agente de IA completo. Neste post, nosso objetivo será criar um Agente capaz de responder perguntas sobre o cenário macroeconômico brasileiro, utilizando dados de expectativas de mercado do Boletim Focus do Banco Central do Brasil (BCB) e o framework LangChain no Python.
Modelos de previsão macroeconômica podem facilmente alcançar um número elevado de variáveis. Mesmo modelos simplificados, como o Modelo de Pequeno Porte (MPP) do Banco Central, usam cerca de 30 variáveis. Isso impõe um grande desafio ao nosso dia a dia: como fazer a gestão destes dados para uso em modelos, desde a coleta até o tratamento?
É notável que os preços de produtos alimentícios subiram consideravelmente nos últimos anos. De 2010 para cá a inflação de alimentos foi de 211%, enquanto que a inflação cheia foi de 138%, uma diferença de ~4.9% por ano. Aquela estourou o intervalo da meta de inflação em 13 anos, enquanto esta estourou 5 anos. O que explica esta diferença gritante?