Tag

convey Archives - Análise Macro

Acessando microdados da PNAD Contínua no R

By | Data Science

Os microdados da Pesquisa Nacional por Amostra de Domicílios Contínua (PNADC), produzida pelo IBGE, possuem uma riqueza enorme de informação de um conjunto de indicadores relacionados à força de trabalho no país, constituindo um verdadeiro tesouro para economistas e cientistas sociais. Esse grande volume de dados exige, por consequência, o uso de ferramentas adequadas para o tratamento, análise, visualização e sua utilização em geral. Em suma, é necessário utilizar linguagens de programação para "colocar a mão" nesses dados e, neste exercício, mostraremos como fazer isso usando o R.

Para reproduzir o exercício a seguir você precisará dos seguintes pacotes:


library(PNADcIBGE) # CRAN v0.7.0
library(survey) # CRAN v4.0
library(convey) # CRAN v0.2.3
library(magrittr) # CRAN v2.0.1

1)  Importar microdados trimestrais  

Para começar o exercício, vamos importar os microdados para o environment do R usando o pacote PNADcIBGE - que foi desenvolvido pela própria equipe do IBGE. Os microdados trimestrais serão o alvo do nosso exemplo: apontamos na função get_pnadc o último período (ano/trimestre) disponível da pesquisa e, opcionalmente, as variáveis de interesse1.


# Importar online microdados do 3º trimestre de 2021
dados_pnadc <- get_pnadc(year = 2021, quarter = 3, vars = c("VD4020", "V2007"))

# Classe do objeto
class(dados_pnadc) # útil para análises de dados amostrais complexos

[1] "svyrep.design"

2)  Análise de dados

Após este simples comando de importação executado, os microdados da PNADC já estão disponíveis para fazermos uma análise. A função, inclusive, já configura o plano amostral internamente através do argumento design = TRUE - mas o usuário pode desabilitar para obter os dados brutos -, sendo assim podemos usar o pacote survey para obter, por exemplo, o total de homens e mulheres:


# Obter nº total de homens e mulheres
svytotal(x = ~V2007, design = dados_pnadc, na.rm = TRUE)

#                  total     SE
# V2007Homem   104020393 0.1207
# V2007Mulher  108787836 0.0998

Da mesma forma, e com comandos simples, o usuário pode estimar o índice de Gini a nível nacional:


# Estimar o índice de Gini
dados_pnadc %>%
convey_prep() %>%
svygini(formula = ~VD4020, na.rm = TRUE)

#           gini     SE
# VD4020 0.51625 0.0034

Diversas outras análise podem ser feitas, como esta publicada no blog da Análise Macro:

Saiba mais

Para saber mais confira os cursos aplicados de R e Python.


[1] Note que os microdados consomem espaço excepcionalmente grande na memória do computador, portanto, evite a importação sem nenhum tipo de filtro de variáveis.

 

Como estimar o índice de Gini no R

By | Data Science, Economia, Indicadores

O índice de Gini é uma medida de distribuição de renda muito interessante e conhecida, que tenta expressar em um valor único a desigualdade apresentada na curva de Lorenz. Neste exercício mostramos como podemos estimar essa medida facilmente no R.

O índice de Gini consiste em um número entre 0 e 1, onde 0 corresponde à completa igualdade e 1 corresponde à completa desigualdade e pode ser calculado com a fórmula de Brown abaixo:

Onde:

G = coeficiente de Gini
X = proporção acumulada da variável "população"
Y = proporção acumulada da variável "renda"

Para esse exercício usaremos os microdados da PNAD Contínua trimestral do IBGE, que possui a variável Rendimento mensal efetivo de todos os trabalhos (VD4020). E para tornar o exercício interessante faremos a estimação do índice de Gini por estado (UF) brasileiro.

Pacotes

Para a finalidade do exercício utilizaremos os seguintes pacotes do R, todos disponibilizados no CRAN:


# Instalar/carregar pacotes
if(!require("pacman")) install.packages("pacman")
pacman::p_load(
"PNADcIBGE",
"survey",
"convey",
"tidyverse"
)

Dados

O último trimestre da pesquisa disponível na data deste exercício é referente ao 1º trimestre de 2021. Apontamos esse período na função get_pnadc(), especificamos as variáveis desejadas para coleta e convertemos o objeto resultante para a classe convey para poder fazer a estimação:


pnadc_0121 <- PNADcIBGE::get_pnadc(year = 2021, quarter = 1, vars = c("UF", "VD4020")) %>%
convey::convey_prep()

Estimar índice de Gini

Para estimar o índice de Gini o pacote convey oferece a função svygini, bastando especificar a variável de renda desejada. Como queremos a estimação por estado, usaremos também a função svyby do pacote survey, que serve justamente para calcularmos estatísticas por grupos dos nossos dados, nesse caso a UF.


gini_uf <- survey::svyby(
~VD4020,
by = ~UF,
design = pnadc_0121,
FUN = convey::svygini,
na.rm = TRUE
)

Visualizar os resultados

Por fim, vamos fazer um gráfico simples para visualizar o resultado da estimação, usando o ggplot2:


gini_uf %>%
dplyr::as_tibble() %>%
dplyr::mutate(UF = forcats::fct_reorder(UF, VD4020)) %>%
ggplot2::ggplot(ggplot2::aes(x = VD4020, y = UF)) +
ggplot2::geom_col(fill = "darkblue") +
ggplot2::theme_classic() +
ggplot2::labs(
title = "Índice de Gini por Estado",
subtitle = "Dados do 1º trimestre de 2021",
x = NULL,
y = NULL,
caption = "Fonte: Microdados PNADC-T/IBGE"
)

O que você achou do resultado? Surpreendente? Deixe suas impressões!

Quer aprender mais sobre utilização de microdados? Inscreva-se no curso de R e Python para Economistas.

 

________________________

(*) Para entender mais sobre micro dados e desigualdade, confira nosso Cursos de Micro Aplicada.

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais
e conteúdos exclusivos sobre Análise de Dados!

Assinar Gratuitamente