fatores de risco

O investimento baseado em fatores tem se tornado uma prática comum na pesquisa e nas estratégias de investimento adotadas por diversas instituições de pesquisa e gestoras financeiras. A teoria subjacente a essa abordagem sugere que os retornos de ativos financeiros são influenciados por diversos fatores de risco, que podem ser de natureza macroeconômica, contábil e estatística, impactando a empresa ou o portfólio em análise. Neste artigo, apresentamos como é possível estimar a sensibilidade ao longo do tempo para cada fator de risco em diferentes portfólios setoriais. Em seguida, detalhamos o processo de decomposição dos retornos do portfólio, permitindo identificar quais fatores contribuíram positiva ou negativamente em cada período. Vale destacar que toda a análise de dados foi conduzida utilizando a linguagem de programação Python como ferramenta principal.
A regressão Fama-MacBeth é um método utilizado para estimar parâmetros em modelos de precificação de ativos, como o Modelo de Precificação de Ativos de Capital (CAPM). O método estima os betas e prêmios de risco para quaisquer fatores de risco que se espera que determinem os preços dos ativos. O método opera com vários ativos ao longo do tempo (dados em painel). Os parâmetros são estimados em duas etapas. Vamos aplicar a regressão Fama-Macbeth para dados do mercado acionário brasileiro utilizando o Python.
Vamos continuar a série de postagens sobre como construir um Dashboard de métricas relacionadas a avaliação de ações e construção de um Portfolio de investimentos no Python. Trazemos nessa semana um componente importante para avaliação do risco: o modelo de 3 fatores de Fama-French.
Os modelos de fatores de risco em finanças são utilizados para explicar as variações no retorno de um ativo ou carteira em relação a fatores/características macroeconômicas e da própria empresa. Esses modelos são usados para avaliar o risco de investimentos e gerenciamento de portfólio, permitindo a criação de estratégias e análises com objetivo de tomar decisões mais assertivas. A construção desses modelos geralmente envolve o uso de regressão linear ou outras técnicas estatísticas avançadas. Como ferramenta, podemos utilizar o Python para auxiliar na coleta, tratamento, análise e construção dos modelos.

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.