Tag: machine learning

Construção e Análise do Índice de Condições Financeiras (ICF) com Python

Este exercício apresenta a replicação do Índice de Condições Financeiras (ICF) do Banco Central do Brasil utilizando a linguagem Python. O estudo detalha o ciclo completo de dados: coleta automatizada de variáveis locais e globais (via APIs do BCB, FRED e Yahoo Finance), tratamento estatístico (padronização e remoção de tendência) e modelagem via Análise de Componentes Principais (PCA). Os resultados validam a metodologia, gerando um indicador aderente à dinâmica histórica de aperto e afrouxamento financeiro da economia brasileira.

Análise exploratória e seleção de séries temporais econômicas para modelagem

Quer entender como transformar dados econômicos brutos em previsões macroeconômicas precisas? Neste post, mostramos passo a passo como realizar a análise exploratória e seleção de séries temporais com Python — desde o tratamento de dados e remoção de multicolinearidade até a escolha das variáveis mais relevantes usando técnicas de machine learning e econometria. Um guia essencial para quem quer unir teoria econômica e inteligência artificial na prática da previsão macroeconômica.

Previsão do CPI usando text mining

Exploramos neste exercício, de forma similar a Ferreira (2022), a utilidade de tópicos latentes extraídos dos comunicados do FOMC, por um modelo LDA, na previsão da inflação norte-americana, medida pelo CPI. O objetivo é comparar um modelo econométrico simples, tal como um AR-GAP de Faust e Wright (2013), em especificações com e sem os fatores textuais.

Incorporando IA na previsão do PIB

O PIB é uma variável econômica complexa e de difícil previsão. Neste artigo, mostramos que unir métodos simples e métodos avançados pode aumentar significativamente a previsibilidade do crescimento da economia.

Qual o melhor modelo para prever a inflação medida pelo IPCA?

Neste exercício, testamos 18 modelos diferentes com um conjunto fixo de regressores para previsão da taxa de inflação, medida pelo IPCA. Implementamos o método da validação cruzada, visando obter resultados robustos para comparação de métricas de performance. Apresentamos os resultados gerais e desagregados por horizontes de previsão, além de automatizar todo o processo utilizando a linguagem Python.
Análise Macro © 2011 / 2026

comercial@analisemacro.com.br – Rua Visconde de Pirajá, 414, Sala 718
Ipanema, Rio de Janeiro – RJ – CEP: 22410-002

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp