Existem tantas siglas para métricas de desempenho de modelos preditivos que é fácil se perder na sopa de letrinhas. Neste artigo, fornecemos uma visão geral das principais métricas para avaliar e comparar modelos de regressão e classificação, usando exemplos com dados em Python.
De tokens até stop words, passando por procedimentos de stemming e lemmatizing, dentre outros, neste artigo introduzimos as principais técnicas e conceitos de mineração de textos, preparando os dados para a análise.
Relatórios não precisam ser um compilado de gráficos e tabelas estáticas. Com os AI Assistants é possível trazer vida e análises customizadas, tornando a experiência do usuário mais simples e interativa. Neste exercício mostramos um exemplo integrando um modelo de IA generativa em um relatório feito em R.
O câmbio tem mais impacto sobre a inflação quando a inflação está elevada? Como a inércia inflacionária se comporta em regimes diferentes de inflação? Estas e outras questões macroeconômicas podem ser respondidas com análises de riscos através de regressão quantílica. Neste exercício mostramos o caminho para estimar uma Curva de Phillips Quantílica (CPQ) para o Brasil usando a linguagem R.
Neste exercício mostramos como usar a API de dados da DBnomics, que disponibiliza dados econômicos do Brasil e do mundo de ~100 fontes diferentes. Além de ser gratuita, a API é acessível diretamente do Python e é atualizada em tempo quase real.